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ABSTRACT

Real-time image processing systems become more and more em-

bedded in systems for industrial inspection, autonomous robots,

photo-copying, traffic control, automotive control, surveillance,

security, and the like. Starting in the 80’s many systems - mainly

for low-level image processing - have been developed. The ar-

chitectures range from framegrabbers with attached Digital Sig-

nal Processors (DSPs), to systolic pipelines, square and linear

single-instruction multiple-data (SIMD) systems, pyramids, PC-

clusters, and smart cameras. Many of those systems lack a suit-

able software support, are based on a special programming lan-

guage, are stand alone and cannot be tightly coupled to the rest

of the processors of the embedded system. As a consequence,

most often the embedded system cannot be programmed in one

uniform way.

In this paper we will shortly review the archetypes of image pro-

cessing architectures and their support, after which we will elab-

orate on a hard and software design framework for embedded

image processors. In this framework we are able to schedule

the inherent data and task parallelism in an application in such

a way, that a balance is found for both data and task parallel

parts of the application software. This schedule is optimal for a

certain architecture description. For the selection of the best ar-

chitecture in combination with the best schedule, one can cycle

through design space exploration and scheduling.

1. INTRODUCTION

We aim to investigate the design of application-specific

programmable smart cameras, with integrated sensor,

SIMD-, and ILP processors. In such a camera, a lot of vi-

sion processing is done on-board, allowing the camera to

actuate control systems, raise alarms, or output symbolic

information. Single instruction multiple data (SIMD) pro-

cessors are especially well suited for the pixel and neigh-

bourhood operations common in low-level image process-

ing, while a network of instruction-level parallel (ILP)

processors can handle the more coarse-grained and irregu-

lar algorithms found in intermediate- and high-level tasks.

We are most interested in quantifying the design flow of

such systems via the use of simulation and analysis in a

design space exploration (DSE) environment, and in the

development of an intuitive programming model. In this

paper, we will first introduce the programming model,

which is based on instantiating algorithmic skeletons in

order to bring parallelism into a sequential code image.

Then, we will show how this is integrated in the overall

DSE framework, and how this allows a developer to gen-

erate the most appropriate architecture for his application.

Section 2 will review previous work in the field of fast im-

age processing, providing a reference for our architecture

template and programming model, described in sections 3

and 4. We will continue by introducing our DSE frame-

work in section 5, and section 6 gives an example of the

entire design flow. Finally, we will have some concluding

remarks.

2. PREVIOUS WORK

The large amounts of data used in image processing, and

the speed needed to process this information in a reason-

able amount of time, has led the image processing com-

munity to look into special computer architectures since

the early 1970s [1]. Subsequent miniaturization efforts

have brought us to the point where it is possible to inte-

grate an entire vision processing system in a single security-

camera sized device.

2.1. Stand alone systems

Recognizing the data parallelism inherent in low-level vi-

sion operations such as point and local neighbourhood op-

erations, image processing systems have been designed

massively parallel from the start. This has taken many

forms, such as (systolic) pipelines [2], SIMD processor

arrays [3], and mesh connected multiprocessors[4]. At the

start of the nineties, it became theoretically clear that only

the Linear SIMD Processor would survive [5]. Pipelines

and systolic wave-front arrays are difficult to program and

cannot cope with dynamic control flow: the pipeline must

be flushed at many program branches. Consequently, these

systems can only fruitfully be used in, for example, the

processing of streaming video, using a single dedicated al-

gorithm. Square SIMD systems just became too large and

costly, when every pixel had its own processor. A com-

mon solution to overcome this, was reducing the word-

length of the Processing Elements (PEs) to 4 or 1 bit. Still,
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Figure 1: UCL CLIP4 SIMD image processing system

in many systems the array size was smaller than the im-

age size, which made scanning of the array over the image

necessary. For square arrays this involves a considerable

overhead, in contrast with linear arrays. It can be proven

[5] that with the same amount of chip area, it is more ben-

eficial to make a linear array with a larger word-length

than a square array with a small wordlength. Both the

square and the linear SIMD array have the benefit that they

are very flexibly programmable, and provided with indi-

rect addressing of the image memory, also algorithms that

address the pixels in an irregular way can be supported

[6]. Still there usually is a gap both in hardware and in

software between the SIMD system and its host, a PC or

workstation.

With ever increasing workstation processing speeds, the

advent of cheap Beowulf-type commodity clusters [7], and

the increase in their communications bandwidth, the other

architectures have faded into the background. The sole

survivor is the linear SIMD architecture, that can be found

as accelerator board, architecture component in smart cam-

eras and even in a rudimentary form in MMX/SSE/Altivec/...

instruction sets in general purpose processors.

The clusters are usually programmed using the MPI mes-

Figure 2: NEC IMAP-Vision SIMD vision accelerator

sage passing library [8]. Data-parallel language exten-

sions such as CC++ [9] or the compiler-directive based

OpenMP [10] are also used, but the amount of effort re-

quired keeps image processing researchers away, except

when the added speed is absolutely necessary. Recent ef-

forts have created specific image processing libraries which

generate data-parallel [11] or even mixed data/task paral-

lel [12] programs from sequential code images, which go

a long way towards providing researchers with the bene-

fits of parallel processing without the hassle.

2.2. Vision accelerator boards

Because of the increased power and area efficiency, SIMD

arrays, and in particular linear processor arrays (LPAs),

are still frequently used in embedded applications. Vision

accelerator boards are employed in real-time control sys-

tems where there is enough room to have a workstation.

They contain LPAs (IMAP-Vision [13]), DSPs (FUGA

[14]), or GP processors (GenesisPlus [15]).

The IMAP-Vision uses a data-parallel C extension called

1DC [16] to program the LPA, while the FUGA and Gen-

esisPlus are programmable in standard C++. All boards

provide optimized library routines for common image pro-

cessing operations. In addition, the GenesisPlus uses the

library routines to interface with a separate neighbourhood

processor as well.

The use of an explicitly data parallel language makes the

IMAP-Vision slightly more difficult to program, but also

potentially faster. It occupies a place between assembly

language, which is always fastest but not realistically used

by image processing researchers, and a library-only based

approach, which may shield the programmer too much to

make any optimizations. It seems that a library-based sys-

tem in which the user can descend to a (parallel) program-

ming level, if necessary, is the best approach.

2.3. Smart cameras

For the even more embedded market, with a need to be

very small and power efficient, cameras that integrate sens-

ing and processing are emerging. Again, DSP (Vision

Components [17], iMVS [18]) and GP (Legend [19],
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Figure 3: Philips CFT Inca311 Intelligent Camera

mvBlueLYNX [20]) solutions are often used, but single-

chip LPAs (Xetal [21], added to Inca311 [22]) and even in-

tegrated sensor/LPA chips (MAPP2500 [23]) exist as well.

Again, all systems are programmable using an image ac-

quisition and processing library, but the single chip LPAs,

because of the simplicity of their processing elements, can-

not easily be programmed in C. Xetal tries to remedy this

by providing a C-like macro language, while the

MAPP2500 avoids the problem altogether by only provid-

ing a few algorithms specific to the expected application

domain (range imaging). Both solutions are unsatisfying.

Two of the smart cameras, Inca311 and Legend, are also

programmable using graphical programming languages.

Both are targeted at industrial inspection, and allow novices

in the field of image processing to graphically connect

algorithms like sub-pixel edge detection, angle measure-

ments and template matching. Efforts have been made to

put such a user interface above a library-based approach,

providing another level of abstraction in a single frame-

work.

3. ARCHITECTURE TEMPLATE

In our SMARTCAM [24] DSE environment, an application

designer will be able to generate an optimal smart camera

hardware configuration for his specific domain, based on

his application code and various constraints such as size,

cost and power consumption. However, for this approach

to be feasible it is necessary to restrict the search space

by imposing an architecture template. Based on the previ-

ous work described in the previous section, our architec-

ture template will consist of a sensor, LPA(s), instruction-

level parallel (ILP) processor(s), memories, and commu-

nications peripherals (see figure 4). These will be param-

eterizable with regard to resolution, number of PEs and

PE functionality, data width, the amount and type of func-

tional units, etc.

The choice of an LPA is simple, because it is perfectly

suited for the data parallelism inherent to low-level im-

age processing operations. ILP processors, such as very

long instruction word (VLIW) and superscalar processors,

can execute multiple independent instructions per cycle,

exploiting a finer-grained level of parallelism than LPAs.

This is necessary because higher-level vision processing

tasks are too irregular to execute on LPAs. Finally, using

a network of processors allows us to take advantage of the

independence between different image processing tasks,

or between different stages in a pipeline.

4. PROGRAMMING MODEL

Of course, managing such a diverse set of parameteriz-

able processors without putting too great a strain on the

programmer requires a unified programming model. The

programming languages for the systems described in sec-

tion 2 fall in five categories: (parallel) assembly, special-

ized parallel languages, data-parallel extensions to a se-

quential language, (generalized) libraries, and graphical

programming environments. We think that assembly is

too time consuming, and specialized parallel languages

require too much effort to learn to gain widespread use

in real applications. This leaves us with three viable op-

tions; however, as described in [11], any deviation from a

standard sequential programming model creates a barrier

for adoption, and thus we would like to limit that as much

as possible.

Thus, our programming model will consist of a C/C++

image processing library, possibly with a graphical pro-

gramming environment on top. If the user wants to add

library routines, either to accomodate new algorithms or

to speed up existing ones, he can do so by using some

data-parallel extensions in the form of compiler directives

or pragmas. Note, though, that because of the possibly

limited capabilities of some of the processors in the archi-

tectural template, he may have to provide several versions.

4.1. Algorithmic skeletons

Because extensions to the library should be as infrequent

as possible, we will base it around the concept of algorith-

mic skeletons [25], also called template- or pattern-based

parallel programming. This means that the library pro-

vides higher-order functions which only implement a cer-

tain structure and communication, while the user provides

the code for the actual computation (see figure 5). A use-

ful survey of different skeletons and implementations is

contained in [26]. In the field of low-level image process-

ing, examples are generalized skeletons for point opera-

tions, neighbourhood operations, and global reductions.

By using the algorithmic skeletons, the user is completely

shielded from the parallel implementation of his algorithm,
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Figure 4: A possible architecture template for a smart camera device, containing SIMD, ILP, and special-purpose proces-

sors. All components, including the interconnection network, are subject to adjustment by the architecture exploration.

providing only the sequential code to process a single da-

tum. The advantage, apart from providing the developer

with a sequential interface and avoiding changes to the li-

brary, is that this abstraction allows the program to be exe-

cuted on different processor architectures without changes

to the user code: once a skeleton implementation has been

provided for the architecture, it is possible to run any in-

stantiation of it1. Skeletons which are not implemented on

a certain architecture are simply never scheduled to those

processors.

While this abstraction over communication as well as ar-

chitecture is very convenient, algorithms which cannot be

captured in one of the provided skeletons are executed

sequentially. That can be avoided by providing the user

with low-level communication primitives, but this might

introduce problems with scheduling and maintainability.

Therefore, it is better to allow the programmer to cre-

ate his own skeletons, possibly based on already existing

ones. In the ideal case this would be done in an architecture-

independent manner, but for some architectures that is ei-

ther impossible or inefficient. Thus, there are four levels

of abstraction in our programming model:

1. No abstraction for the specification of skeletons for

restricted architectures or fixed-function blocks.

2. Abstraction over architecture for the specification

of skeletons for general architectures, such as those

capable of executing C.

1Severely limited architectures – like single-ALU processing ele-

ments in SIMD systems – may have additional requirements on the

skeleton instantiation functions, such as the absence of indirect address-

ing.

3. Abstraction over communication for the user pro-

gram that makes use of the skeletons.

4. Abstraction over syntax for a graphical program-

ming environment.

5. DSE FRAMEWORK

Writing the application is only the first step in our frame-

work (see figure 6). The compilation trajectory takes the

source code, instantiates the skeletons, extracts a macro

dataflow graph, schedules the different skeleton instanti-

ations to the available processors in the architecture tem-

plate instantiation, and finally compiles the scheduled code

for the different processor types. The design space explo-

ration environment finds the most suitable processor ar-

chitecture by structurally simulating and analyzing the ap-

plication on different processor architectures (intra-

processor optimization loop) and different combinations

of processors (inter-processor optimization loop). Finally,

the developer can also access the results, and use them to

tune his program (source code transformation loop).

5.1. Compilation

The different skeleton instantiations in an image process-

ing application are not fully dependent. Some can be run

concurrently, while others can be pipelined. The compiler

starts by extracting a macro dataflow graph (MDG) from

the application in order to analyze the dependencies. It

then makes a compromise between data-parallel (within

the skeletons) and task-parallel (between the skeletons)

execution [27]. It uses a cost model and profiling infor-

mation to determine the weight of each task.
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A higher-order function is a function which takes another function as input. We can use this to abstract over the

structure of a certain computation. Consider the following code:

for (y=0; y<HEIGHT; y++)

for (x=0; x<WIDTH; x++)

out[y][x] = (in[y][x]>128);

Using a higher-order function, PixelToPixelOp, we can separate the structure from the computation. PixelToPixelOp

will implement the loops, calling binarize every iteration.

int binarize(value)

return (value>128);

void PixelToPixelOp(int in[HEIGHT][WIDTH], int out[HEIGHT][WIDTH], int (*op)(int))

for (y=0; y<HEIGHT; y++)

for (x=0; x<WIDTH; x++)

out[y][x] = op(in[y][x]);

PixelToPixelOp(in, out, binarize);

Figure 5: Abstracting over structure using higher-order functions
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Figure 6: SmartCam design flow. Note the use of algorithmic skeletons to create data-parallel applications from a sequen-

tial code image, and the different types of design space exploration to find a suitable architecture.
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5.2. Intra-processor optimization

Our architecture template specifies the type of processors

that can be used, but not their exact composition, such

as the number and types of functional units. The intra-

processor optimization step heuristically iterates over the

possibilities. Each iteration the application is simulated,

and profiling information is used to steer the exploration

of the design space [28]. The result is a set of architectures

that are optimal with regard to speed, area and power con-

sumption (the pareto-optimal set). The user can then make

the trade-off himself.

5.3. Inter-processor optimization

Because the architecture template allows the use of more

than one processor, an inter-processor optimization step

is needed to find the best mix, and the interconnection

between them. This follows much the same strategy as

the intra-processor optimization, but a rescheduling of the

macro dataflow graph is also necessary.

5.4. Source code transformation

Based on feedback from the profiling done in the opti-

mization steps, the user can decide to rewrite parts of his

application. For example, when rewriting a legacy ap-

plication, he can start by replacing the easiest loops by

skeleton instantiations in order to make them execute in

parallel. If no architecture can be found that meets his re-

quirements, he can replace more difficult constructions. In

this way, it is possible to construct a parallel application

with the least amount of effort.

6. DESIGN FLOW EXAMPLE

We will present a simulated design flow example. Sup-

pose that we want to find lines in an image using the Hough

transform [29] using as little power as possible, meaning

that we want a low clockspeed because that allows us to

lower the supply voltage.

The application first convolves the image with an edge

detector, then binarizes on the edge strength, and finally

transforms the edges to the (ρ, φ) space, where each point

corresponds to a possible line. The sequential code might

look like this:

while (1)

getimage(in);

for (y=1; y < HEIGHT-1; y++)

for (x=1; x < WIDTH-1; x++)

/* Sobel X */

val=abs(-in[y-1][x-1]-2*in[y][x-1]-in[y+1][x-1]

+in[y-1][x+1]+2*in[y][x+1]+in[y+1][x+1]);

/* Sobel Y */

val+=abs(in[y-1][x-1]+2*in[y-1][x]+in[y-1][x+1]

-in[y+1][x-1]-2*in[y+1][x]-in[y+1][x+1]);

trans = {0};

/* Binarization */

if (val > 128)

/* Hough transform */

for (phi=0; phi < PHI RES; phi++)

trans[phi][abs(x*cos(M PI*phi/PHI RES)

+y*sin(M PI*phi/PHI RES))]++;

Simulating this code on an 8-bus TTA [30] ILP proces-

sor (with a lookup-table based Hough transform) results

in 5.2 MCycles for a 320x240 image with 32 angles, or

156 MHz for video speed at 30fps (discounting readout

and display). The intra-processor optimization step will

find that there is no floating-point math, and instantiate

the processor accordingly. If this does not meet the power

requirements, the most logical step is to use a neighbour-

hood skeleton for the edge detector, and a pixel skeleton

for the binarization:

int sobel(int **nbh)

val = abs(-nbh[-1][-1]-2*nbh[0][-1]-nbh[+1][-1]

+nbh[-1][+1]+2*nbh[0][+1]+nbh[+1][+1]);

val += abs(nbh[-1][-1]+2*nbh[-1][0]+nbh[-1][+1]

-nbh[+1][-1]-2*nbh[+1][0]-nbh[+1][+1]);

return val;

int binarize(int val) return (val > 128);

while (1)

getimage(in);

NeighbourhoodToPixelOp(in, sob, 3, 3, sobel);

PixelToPixelOp(sob, edge, binarize);

trans = {0};

for (y=1; y < HEIGHT-1; y++)

for (x=1; x < WIDTH-1; x++)

if (edge[y][x])

for (phi=0; phi < PHI RES; phi++)

trans[phi][abs(x*cos(M PI*phi/PHI RES)

+y*sin(M PI*phi/PHI RES))]++;

Within our template, the most energy-efficient way of com-

puting neighbourhood and pixel operations is an LPA, and

so the intra-processor optimization step instantiates one

with 320 processors. By scheduling the application in

a pipelined manner, this reduces the critical path to 4.2
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MCycles/image, at the expense of a lot of area. Most of

the computation is done in the transform, however, and

parallelizing it is necessary:

int sobel(int **nbh)

val = abs(-nbh[-1][-1]-2*nbh[0][-1]-nbh[+1][-1]

+nbh[-1][+1]+2*nbh[0][+1]+nbh[+1][+1]);

val += abs(nbh[-1][-1]+2*nbh[-1][0]+nbh[-1][+1]

-nbh[+1][-1]-2*nbh[+1][0]-nbh[+1][+1]);

return val;

int binarize(int val) return (val > 128);

int hough(int x, int y, int val, int **trans)

if (val)

for (phi=0; phi < PHI RES; phi++)

trans[phi][abs(x*cos(M PI*phi/PHI RES)

+y*sin(M PI*phi/PHI RES))]++;

int add(int val1, int val2) return (val1+val2);

while (1)

getimage(in);

NeighbourhoodToPixelOp(in, sob, 3, 3, sobel);

PixelToPixelOp(sob, edge, binarize);

AnisoPixelToGlobalReductionOp(edge, trans,

hough, add);

We assume a skeleton AnisoPixelToGlobalReductionOp

which in the limit constructs a transform for each pixel,

and adds them using a reduction tree. Because of the large

amounts of communication time (the size of the transform

times the depth of the tree) this does not scale well, but at

4 ILP processors it reduces the critical path to 1.2 MCy-

cles/image, which may well suit our requirements.

7. CONCLUSION

Based on previous work, we have derived an architecture

template and programming model for image processing in

smart cameras. The architecture contains LPA and ILP

processors, while the programming model is based on al-

gorithmic skeletons. We have presented our DSE frame-

work, which finds an optimal instantiation of the template

for a particular application. An example has shown the

iterative process in which the user transforms his source

code to allow parallelization, and the optimizer finds the

best quantity and configuration of processors.

This work is supported by the Dutch government in their

PROGRESS research program.
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