
Dyna-MLAC: Trading Computational and Sample
Complexities in Actor-Critic Reinforcement Learning

Bruno Costa
Centro de Pesquisa de Energia Elétrica

Rio de Janeiro, Brazil
Email: brunosc@cepel.br

Wouter Caarls
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
Email: wouter@caarls.org

Daniel Sadoc Menasché
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
Email: sadoc@dcc.ufrj.br

Abstract—Sampling and computation budgets are two of the
key elements that determine the performance of a reinforcement
learning algorithm. In essence, any reinforcement learning agent
must sample the environment and perform some computation
over the samples to decide its best action. Although very
fundamental, the trade-off between sampling and computation
is still not well understood. In this paper, we explore this
trade-off in an actor-critic perspective. First, we propose a
new RL algorithm, Dyna-MLAC, which uses model-based actor-
critic updates (MLAC) within the Dyna framework. Then, we
numerically indicate that the convergence time of Dyna-MLAC is
smaller than pre-existing solutions, and that Dyna-MLAC allows
to efficiently trade number of samples and computation time.

I. INTRODUCTION

Reinforcement Learning (RL) is a field of machine learning
inspired by psychology and biology, concerned with how
agents learn which actions to take in an environment in order to
maximize some cumulative reward. At any point in time, the
agent knows the current state and, after taking some action,
it learns the resulting state and the obtained instantaneous
reward. The tuple comprising the current state, action, resulting
state and instantaneous reward is referred to as a sample. Given
the current state and an action, the state transition function
yields the resulting next state and an instantaneous reward.
The transition function is unknown to the agent and typically
stochastic.

Collecting and processing samples are two of the most
fundamental activities performed by any reinforcement learn-
ing agent. In essence, the performance of any reinforcement
learning algorithm must account for sampling and computation
costs, also referred to as sampling and computational com-
plexity [1]. Low sampling complexity algorithms are favored
in situations where samples are costly or even dangerous
to obtain, such as the control of manufacturing plants. Low
computational complexity algorithms, on the other hand, may
be preferred when samples are abundant (big data), or in real-
time systems, where decisions have to be made within a short
time interval.

Theoretical work on sampling complexity is focused on
PAC (Probably Approximately Correct) algorithms [2], [3],
which provide analytical bounds for the required number of
samples. However, these bounds are very loose, and mostly
apply to discrete state and action spaces (C-PACE [4] is a
notable exception). In addition, the computational complexity
for these algorithms is fixed.

Algorithms with low empirical sampling complexity are
usually characterized by the re-use of samples, often in the
form of a learned process model that approximates the state
transition function. These algorithms are broadly classified as
model-based solutions, e.g. PILCO [5], and have a very high
computation cost. Conversely, algorithms which are computa-
tionally cheap, such as classical Q-learning [6], require a large
number of samples to attain good performance. The required
number of samples often precludes the use of such model-free
solutions in realistic scenarios, and hampers their applicability.

In this work, the trade-off between computational com-
plexity and sampling complexity is explored in an actor-critic
perspective. Actor-critic algorithms use separate, explicit repre-
sentations of the state-action mapping and expected cumulative
reward in order to deal with continuous states and actions such
as found in robotics applications [7]. The Dyna framework [8],
a reinforcement learning framework that can scale smoothly
between completely model-based and model-free modes, is a
natural choice for investigating the trade-off. It was previously
used for this purpose in previous work on discrete action
spaces [9].

A learning update rule (or update rule, for short) deter-
mines how the solution must be modified as new samples are
gathered. As Dyna learns a process model, a natural extension
consists of its coupling with model-based learning update
rules. As such, two algorithms are considered: 1) Dyna-SAC
(Standard Actor-Critic), using standard temporal-difference
update rules [10] and 2) Dyna-MLAC, using the model-based
update rules of the MLAC (Model-Learning Actor-Critic)
algorithm [11]. Learning a process model from the samples can
be done using any supervised learning technique, like neural
networks [12]. In this work, we use a memory based algorithm,
Locally Linear Regression (LLR) [13].

In summary, the key question addressed in this paper is
the following: to what extent is it possible to trade number
of samples and computation time within the Dyna actor-
critic framework? In answering this question, we provide the
following contributions1:

1) algorithm design: we propose a version of Dyna-SAC
using LLR and the new Dyna-MLAC algorithm, both with
continuous action and state spaces. Our key insight consists of
using LLR as function approximator and using MLAC updates
within the Dyna framework;

1More details may be found in [14]

2) convergence analysis: we analyze the number of updates
required in order to stabilize the learning curve. We verify that
although Dyna-SAC and Dyna-MLAC achieve the same end
performance after a significant number of updates per control
step, Dyna-MLAC demands less iterations to converge.

II. BACKGROUND

Our solution has two basic building blocks: actor-critic
learning methods and locally linear regression.

A. Reinforcement Learning

Reinforcement Learning (RL) [15] agents are typically
concerned with solving a Markov Decision Process (MDP). An
MDP is a tuple (S,A, T, γ,D,R), where S denotes a set of
states; A is a set of actions; T = p(s′|s, a) is the state transition
function which encodes the distribution of next states s′ upon
taking action a in state s; γ is a discount factor for future
rewards; D is the initial-state distribution, from which the start
state s0 is drawn; and R is the reward function R(s, a, s′) upon
transitioning from state s to s′ through action a.

The policy π : S 7→ A determines what action to take
in every possible state. The goal of the agent is to maximize
the total expected reward in a possibly infinite-horizon task.
The expected reward at time step t is the sum of all future
intermediate rewards r:

Rt = E{rt+1+γrt+2+γ2rt+3+. . . } = E

{ ∞∑
t=0

γtrt+1

}
(1)

where the discount factor γ ∈ (0, 1] weights the importance
between future rewards and present rewards.

The value function V π : S 7→ R determines the expected
sum of rewards obtained by following a given policy π with
initial state s, and is defined as:

V π(s) = Eπ {Rt|st = s} (2)

The value function satisfies the Bellman equation [16]:

V π(s) =
∑
s′

T (s, π(s), s′)
(
r(s, π(s), s′) + γV π(s′)

)
(3)

Finding the optimal policy and associated value function
is referred to as solving the MDP. The classical ways to solve
an MDP [17] require full knowledge of all variables, which
is hard, if not impossible, to obtain. Instead, reinforcement
learning methods sample the environment without requiring
full knowledge of all MDP variables, specially the state transi-
tion function T . In particular, temporal difference methods use
samples of the right-hand side of (3) to iteratively approximate
the Bellman equation.

Let δt be the temporal difference error (TD error) [10] of
the expected reward after a transition from state st−1 to state
st at time t,

δt = rt + γV (st)− V (st−1) (4)

Actions associated to positive TD error (better than expected
result) are iteratively reinforced as new samples are gathered.

B. Standard Actor-Critic

One class of temporal difference methods, known as actor-
critic [18], iterates in searching the optimal value function
and the optimal policy, where the first is performed by the
critic and the latter by the actor. Actor-critic methods have
a separate structure for the value function (critic) and for
the policy (actor). Policies computed using the actor-critic
approach usually admit compact representations and naturally
extend to continuous state and action spaces.

The SAC algorithm is described in Algorithm 1. After
initialization (lines 3-6), the agent samples its current state
and instantaneous reward (line 8) and chooses an action to
execute. Let at be the action executed by the actor at time t.
To learn about the environment and to avoid local minima, at
accounts for the policy learned so far and a white noise term
∆t (zero-mean Gaussian). Then,

at = π(st) + ∆t (5)

π(st) and ∆t are referred to as the exploitation and exploration
components of the action, respectively (line 10).

The Standard Actor-Critic (SAC) updates are done using
the temporal difference error. The temporal difference error
is obtained according to (4) (line 11). Then, procedure SAC-
Update is called to update the value function and the policy
(lines 16-20 of Algorithm 1). The value function is updated
towards minimizing the TD error (line 18), while the policy is
adjusted towards the explored action only if the TD error was
positive (and away from it otherwise, line 19). In Algorithm 1,
αa and αc are the learning step for the actor and for the critic,
respectively.

Algorithm 1 SAC algorithm

1: procedure SAC
2: Repeat forever:
3: ∀s ∈ S : e(s)← 0
4: s0 ← Initial state
5: Apply random input a0
6: t← 1
7: loop until episode ends:
8: Measure st and rt
9: Let ∆t be a sample from a zero-mean Gaussian

10: at ← π(st) + ∆t . Choose an action
11: δt = rt + γV (st)− V (st−1) . Calculate td-error
12: Call SAC-Update(δt, ∆t−1, αa, αc, st)
13: Apply at
14: t← t+ 1
15: procedure SAC-UPDATE(δt, ∆t−1, αa, αc, st)
16: Update the eligibility trace et(st)
17: for all s ∈ S do
18: V (s)← V (s) + αcδtet(s) . Update the critic
19: π(st)← π(st) + αaδt∆t−1 . Update the actor
20: Clamp π(s) to A

C. Eligibility Traces

Procedure SAC-Update updates all “eligible” elements of
the value function (line 17-18). Eligibility traces are used to
keep a history of the past visited states. They assign a weight
to each state, in such a way that most recently visited states

are associated to greater weights, allowing for a refined way
to credit past experiences. Let λ ∈ [0, 1) be the eligibility
decay rate. Let et be the eligibility vector at time t, et =
(et(1), et(2), . . . , et(|S|)). et is initialized with zeros and, after
each time step, it is updated as follows

et(s) =

{
λγet−1(s) if s 6= st
1 if s = st

(6)

Weights decay by a factor of λγ at each step.

D. Locally Linear Regression

When searching for the policy π that maximizes the value
function V , the policy and the value function are typically
approximated using function approximators [19]. Function
approximators for V and π are particularly useful to handle
continuous state and action spaces. In our proposed solution,
we use locally linear regression, a nonparametric, memory-
based function approximator [13]. Although the hyperspace
being approximated can be quite complex, if a small region
is considered, it can usually be well approximated by a
linear model. LLR stores samples, hence a memory-based
approximator, to linearize the hyperspace around a point.

Building step: The building step in LLR is simply add the
sample to the memory, taking account some kind of memory
management [20] since the LLR memory is finite and the
transitions can easily exceed it. Considering a memory of
size N , let mi be a stored sample, mi = [xi,yi], where
i = 1, . . . , N . One sample mi is a row vector containing the
input data xi ∈ Rn and output data yi ∈ R`. The samples are
stored in a matrix called the memory M ∈ RN ×Rn+`. Each
row of the memory stores a sample.

Querying step: Given an input query q ∈ Rn and memory
M, our goal is to determine the output ŷ ∈ R`. To this aim,
a linear model around the query is considered. First, the k-
nearest neighbors of q, denoted Kq, are found in the LLR
memory. For performance purposes, the search is done with
the help of a k-d tree [21].

Let Xq ∈ Rk×Rn+1 and Yq ∈ Rk×R` be the input and
output data matrices associated to the k-nearest neighbors of
q. Each row of Xq contains input data corresponding to one
of the k-nearest neighbors of q padded with a constant term
equal to one, added to allow for a bias on the output. The bias
makes the model affine instead of truly linear. The i-th row of
Yq contains output data corresponding to the i-th row of Xq.
Then, a linear model in the parameters β ∈ Rn+1 × R` for a
given input q is Xqβ = Yq. The solution is obtained using
the least square method and yields β. The estimated output ŷ
is given by:

ŷ = [q, 1]β (7)

Learning step: Learning consists in two steps: inserting a
sample and updating the existing ones. Take for an example
the actor updates in line 19. Each sample mi stores a state
s ∈ S as the input xi and an action a ∈ A as the output yi.

The evaluation of the right hand side of line 19 involves
a query of π(s), solved using the nearest neighbors Ks
and (7). Let ŷ be the obtained result. Then, a new sample
[s, ŷ+αaδt∆t−1] is inserted into memory M. Afterwards, the

output of all samples in Ks is adjusted by adding αaδt∆t−1 to
each of them as well. Similar steps are executed in the critic
update (line 18), using a separate memory wherein each sample
mi stores a state s ∈ S as the input xi, and the expected return
as the output.

III. ALGORITHMS

A. Model Learning Actor-Critic

The Model Learning Actor-Critic (MLAC) [11] extends
Standard Actor-Critic (SAC) by considering a process model.
A process model is a function f̂ which approximates the state
transition function, relating every state-action pair (s, a) to its
corresponding predicted state s′, s′ = f̂(s, a). After every
new measurement of st (line 8 of Algorithm 1), the process
model must be updated accordingly. In this work, we consider
process models approximated by LLR, analogous to the actor
and critic.

Next, we assume that a process model is given and briefly
introduce the MLAC actor update. As the LLR approximation
of the value function gives us its gradient with respect to the
state ∂V/∂s, and the process model f̂ gives us the gradient of
the next state with respect to the action ∂s′/∂a, we can use
the chain rule to determine the gradient of the value of the
next state with respect to the action, allowing us to update the
actor towards maximizing the value of the next state V (s′).

As such, for every state s, the MLAC gradient-descent actor
update is given as follows

π(s)← π(s) + αa
∂V

∂s

∣∣∣∣
s=s′

∂s′

∂a
(8)

MLAC is obtained from Algorithm 1 by updating the process
model after line 8 and substituting line 19 by (8).

In the original reference for MLAC, LLR was also used,
hence the choice for this work. Not only the partial derivatives
from (8) are easily obtained [11], but the authors have also
evaluated the performance using radial basis functions [22]
and achieved inferior results.

B. Dyna-SAC

The Dyna framework [8] was proposed as way to accelerate
the learning process by using a model to simulate real-world
interactions. Using a process model, Dyna updates both the
actor and the critic in the same way as SAC, but using the
learned model to simulate new samples which mimic real-
world interactions. A number of updates using the learned
model are done per control step, i.e., every time the agent
learns using the real world, it also simulates a fixed number of
interactions using the learned model. Dyna-SAC is shown in
Algorithm 2, and uses the same SAC-Update procedure from
Algorithm 1.

The simulated environment may be restarted in some
situations (line 25), such as: 1) in an episodic task, i.e., a
task that admits a terminal state, the simulated environment
should be restarted every time a terminal state is reached or
2) the estimated variance of the predicted state becomes too
high, indicating an inaccurate process model [13]. Note that
the hyperspace region close to the initial state is typically the

Algorithm 2 Dyna-SAC algorithm

1: procedure DYNA-SAC
2: Repeat forever:
3: ∀s ∈ S : e(s)← 0
4: s0 ← Initial state
5: Apply random input a0
6: t← 1
7: s0 ← Initial state
8: a0 ← random action
9: t← 1

10: loop until episode ends:
11: Choose ∆t at random
12: Measure st and rt
13: Update the process model using [st−1, at−1, st]
14: at = π(st) + ∆t . Choose an action
15: δt = rt + γV (st)− V (st−1) . Calculate td-error
16: Call SAC-Update(δt, ∆t−1, αa, αc, st)
17: for fixed number of updates per control step do
18: Choose ∆t at random
19: st ← f̂(st−1, at−1) . Next simulated state
20: rt ← R(st−1, at−1, st) . Transition reward
21: at ← π(st) + ∆t . Next simulated action
22: δt ← rt + γV (st)− V (st−1)
23: Call SAC-Update(δt,∆t−1, αsa, αsc, st)
24: t← t+ 1
25: if should restart simulated environment? then
26: s0 ← Initial state . Restart model
27: a0 ← random action
28: t← 1
29: Apply at
30: t← t+ 1

region that is sampled most often. Hence, the process model
has higher confidence close to the initial state, which motivates
the more intense usage of that region in the learning process.

The values for the learning steps αsa and αsc can be dif-
ferent from their non-Dyna version (αa and αc, respectively).
Using a lower value makes the Dyna updates less important
and can account for model error, for example. In this work, the
values being used are the same for the Dyna and the non-Dyna,
as shown in Table I.

C. Dyna-MLAC

By combining the Dyna framework with MLAC updates,
the Dyna-MLAC algorithm is proposed. Dyna-MLAC is ob-
tained from Algorithm 2, using the MLAC update described
in Section III-A. Note that the MLAC update procedure relies
on the process model already provided by the Dyna framework.

IV. EXPERIMENTS

In this section, the performance of the four considered
algorithms (SAC, MLAC, Dyna-SAC and Dyna-MLAC) will
be evaluated using the pendulum swing-up environment2. Our
goals are to 1) evaluate all four algorithms convergence to
the same, optimal solution; 2) illustrate the trade-off between

2All data used, along with the source code and results for this work are
available at http://git.io/vmVLv

sampling and computation complexity, showing that Dyna-
MLAC enables the trading between sampling and computation
costs and 3) show that using the Dyna-MLAC updates we can
extract more information from the process model achieving
faster convergence.

To compare the algorithms, we plot the rise time against
the computation time. The rise time is the number of episodes
the system takes to converge. A trial is considered to have
converged when the agent performed three episodes in a
row with an accumulated reward sum greater than a fixed
performance threshold. The computation time is given by the
number of updates per control step. Note that SAC and MLAC
have a fixed number of updates per control step equal to one.
Therefore, our plots show straight lines when analyzing these
two algorithms.

A. Pendulum Swing-up

The pendulum swing-up task, one of the benchmark prob-
lems described in [23], consists of a DC motor attached to a
round plate. A weight of mass m is fixed at the border of the
plate, creating a pendulum, as shown in Figure 1.

The goal is to swing up and balance the weight, but the
motor does not have enough torque to do this immediately
from the starting position; it will first have to rotate in the
opposite direction to gain momentum. At every point in time
t, the controller can change the voltage a = u supplied to the
motor. The system state s = [θ, θ̇] is given by the angle and
the angular velocity, where the initial state is s0 = [π, 0]. An
episode takes 3 seconds, with a sampling time of 0.03 seconds,
which leads to 100 control steps per episode. At every control
step, the instantaneous reward is given by r = −5θ2−0.1θ̇2−
u.

Figure 1: The pendulum swing-up environment.

B. Computational Budget for Model-Based Updates is Bene-
ficial when Sampling is Costly

In this section, we consider the pendulum swing-up prob-
lem with maximum allowed voltage u ∈ [−1.5, 1.5]. In this
setup, the weight must change direction twice before being
able to balance at the top. Table I shows all the parameters used
in the experiments. The SAC/Dyna-SAC and MLAC/Dyna-
MLAC parameters are the same for a fair comparison. The
other two parameters globally set across all four algorithms
are: the eligibility decay rate λ = 0.65 and the reward discount
rate γ = 0.97.

Figure 2a shows the rise time as a function of the computa-
tion time for all four algorithms. Under MLAC, Dyna-MLAC
and Dyna-SAC, a process model is used when updating the

(a) Actions A ∈ [−1.5, 1.5] and performance of −1700. (b) Actions A ∈ [−3, 3] and performance of −1000.

Figure 2: Rise time of all four algorithms on both versions of pendulum swing-up environment. The light area is the 95%
confidence interval and the bold line is the mean. 32 runs were used to calculate the results.

approximator(s). The additional information extracted from the
samples, stored in the process model, yields smaller rise times
against SAC.

Under Dyna-SAC, a process model is used to simulate real-
world interactions, which generate “virtual samples”. These
“virtual samples” are used to update the TD error, which in turn
is used in the update rules. In that sense, Dyna-SAC implicitly
uses the process model. The greater the number of “virtual
samples” collected between two control steps, the smaller the
rise time (green curve in Figure 2a). Under MLAC, in contrast,
a process model is used explicitly by the actor update rule
(recall the dependence of (8) on the process model s′ through
∂s′/∂a). Figure 2a allows us to compare the advantages and
disadvantages of MLAC and Dyna-SAC in the way they make
use of the process model. The rise time of MLAC is smaller
than that of Dyna-SAC if the number of updates allowed per
control step in Dyna-SAC is small, but greater otherwise (in
Figure 2a, the green and blue curves cross roughly at 4 updates
per control step).

Under Dyna-MLAC, the process model has a twofold role
in the update rule, as it is used 1) to generate “virtual samples”
that will impact the value function and 2) to determine ∂s′/∂a.
By extracting more information from the obtained samples,
Dyna-MLAC shows the best performance among the studied
algorithms. When the number of updates per control step is
one, the rise time of Dyna-MLAC and of MLAC are equal.
As the number of updates per control step increases, the rise
time decreases, remaining always less than or equal to the rise
time of Dyna-SAC.

Note that Dyna-SAC and Dyna-MLAC enable the trading
between computational and sampling budgets. The greater the
computational cost (updates per control step), the smaller the
number of samples required to achieve convergence. However,
when the number of updates per control step is greater than
26, the system is saturated, i.e., between every pair of control
steps the policy converges to maximize performance on the

current process model. After reaching the saturation regime,
when no more information can be extracted either from the
obtained real-world samples or from the learned transition
model, the performance of Dyna-SAC and Dyna-MLAC is
equal and additional computational budget will not reduce
the rise time. The fidelity of the learned model thus poses
a fundamental limit on the complexity trade-off.

SAC MLAC Dyna-SAC Dyna-MLAC
Actor Learning step 0.03 0.03 0.03 0.03
Actor Memory size 2000 2000 2000 2000
Actor # of Neighbors 10 10 10 10
Critic Learning step 0.2 0.3 0.2 0.3
Critic Memory size 2000 2000 2000 2000
Critic # of Neighbors 20 20 20 20
Process Model Memory size - 100 100 100
Process Model # of Neighbors - 10 10 10

Table I: Parameters used in algorithms

C. Model-Based Updates Are Not Always Necessary

Next, we consider a scenario where the motor voltage is
controlled with u ∈ [−3, 3]. This allows the pendulum to
be balanced with just one change of direction. All the other
parameters are shown in Table I. Figure 2b shows the rise time
as a function of the computation time for all four algorithms.
As in the previous setup, both Dyna algorithms are faster
than their non-Dyna counterparts. However, in this experiment
Dyna-MLAC converges roughly as fast as Dyna-SAC.

To explain why Dyna-MLAC and Dyna-SAC have similar
performance in this experiment, consider the left region of
Figure 2a. When the number of updates per control step is
equal to one, the gap between MLAC and SAC determines
the advantage of Dyna-MLAC over Dyna-SAC , as in this case
the performance of SAC (resp., MLAC) and Dyna-SAC (resp.,
Dyna-MLAC) are equal. In Figure 2b, the gap between SAC
and MLAC is negligible. This is in agreement with [11], and
explains why the performance of Dyna-MLAC and Dyna-SAC

is similar in this experiment.

D. The Effect of the LLR Memory Size

One of the most expensive steps in the algorithms con-
sidered in this paper is the search for the k-nearest neighbors.
The computational complexity of this search is directly related
to the size of the k-d tree memory. Given a finite amount of
memory available to an agent, how should it be allocated to
the critic, the actor and the process model?

Figure 3 shows the end performance of Dyna-MLAC as a
function of the amount of memory allocated to the actor, critic
and process model. The minimum memory unit is a sample.
We consider 64 updates per control step and run the experiment
described in Section IV-B for 20 episodes. If the memory
capacity is smaller than 1000 samples, the end performance
increases as additional memory capacity is provided. However,
further increasing the memory capacity beyond 1000 samples
does not impact end performance. Note that the process model
memory capacity significantly impacts system performance
if it is smaller than 60 samples. We also observe that the
performance of the critic sharply increases when its memory
capacity surpasses 125 samples. The performance of the actor,
in contrast, smoothly increases as a function of its memory
capacity.

Figure 3: LLR memory size effect on Dyna-MLAC algorithm
using 26 updates per control step.

V. CONCLUSION AND FUTURE WORK

Sampling and computational complexity are in the essence
of any reinforcement learning algorithm. Although very fun-
damental, the trade-offs involved are not well understood.
In this paper, we provided new insights and algorithms that
enable the trading between sampling and computational com-
plexity under the actor-critic paradigm. Taking Dyna-SAC
and MLAC as reference algorithms which bode well with
sampling-constrained and computationally-constrained envi-
ronments, respectively, we showed that the proposed Dyna-
MLAC combines the best of the two solutions. In particular,
given a certain sampling budget and feasible target rise time,
the computational complexity of Dyna-MLAC can be tuned to
reach the desired goals. Given the promising results presented
in this paper, future work consists of further investigating
under which conditions Dyna-MLAC outperforms its inspiring

algorithms. The choice of LLR as the function approximator
can also be a source of further investigation. Even though [22]
measures the performance using radial basis functions with
inferior results, other function approximators may fare better.

Acknowledgments: this work was partially supported by
CAPES-Brasil (CsF program) and CNPq.

REFERENCES

[1] V. Chandrasekaran and M. I. Jordan, “Computational and statistical
tradeoffs via convex relaxation,” PNAS, vol. 110, no. 13, pp. E1181–
E1190, 2013.

[2] S. M. Kakade, “On the sample complexity of reinforcement learning,”
Ph.D. dissertation, University College London, 3 2003.

[3] M. G. Azar, R. Munos, and H. Kappen, “On the sample complexity of
reinforcement learning with a generative model,” Nov 2011.

[4] J. Pazis and R. Parr, “PAC optimal exploration in continuous space
markov decision processes.” in Proc. AAAI, 2013.

[5] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proc. ICML, 2011.

[6] C. J. C. H. Watkins and P. Dayan, “Technical note: q-learning,” Mach.
Learn., vol. 8, no. 3-4, pp. 279–292, May 1992.

[7] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,” in
Machine Learning: ECML 2005. Springer, 2005, pp. 280–291.

[8] R. S. Sutton, “Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming,” in Proc.
ICML, 1990, pp. 216–224.

[9] W. Caarls and E. Schuitema, “Parallel online temporal difference
learning for motor control,” IEEE Trans. Neural Netw. Learn. Syst.,
in press.

[10] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” in Machine Learning, 1988, pp. 9–44.

[11] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, and
E. Schuitema, “Efficient model learning methods for actor-critic con-
trol.” IEEE Trans. Syst., Man, Cybern., B, vol. 42, no. 3, pp. 591–602,
2012.

[12] A. Galindo-Serrano and L. Giupponi, “Distributed q-learning for ag-
gregated interference control in cognitive radio networks.” IEEE T.
Vehicular Technology, vol. 59, no. 4, pp. 1823–1834, 2010.

[13] C. G. Atkeson, A. Moore, and S. Schaal, “Locally weighted learning,”
Artificial Intelligence Review, pp. 11–73, 1997.

[14] B. S. C. da Costa, “Dyna-mlac: Trading between computational and
sample complexities in actor-critic reinforcement learning,” Master’s
thesis, Federal University of Rio de Janeiro, July 2015.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[16] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA:
Princeton University Press, 1957.

[17] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[18] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-13, pp. 834–846, 1983.

[19] X. Xu, L. Zuo, and Z. Huang, “Reinforcement learning algorithms with
function approximation: Recent advances and applications,” Information
Sciences, vol. 261, no. 0, pp. 1 – 31, 2014.

[20] M. Vaandrager, R. Babuska, L. Busoniu, and G. Lopes, “Imitation
learning with non-parametric regression,” in Proc. AQTR, May 2012,
pp. 91–96.

[21] W. Cleveland and E. Grosse, “Computational methods for local regres-
sion,” Statistics and Computing, vol. 1, no. 1, pp. 47–62, 1991.

[22] I. Grondman, L. Busoniu, and R. Babuska, “Model learning actor-critic
algorithms: Performance evaluation in a motion control task,” in Proc.
CDC, Dec 2012, pp. 5272–5277.

[23] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
Boca Raton, Florida: CRC Press, 2010.

