
MatODE

Wouter Caarls and Erik Schuitema
{w.caarls, e.schuitema}@tudelft.nl

December 21, 2011

Contents

1 Introduction 1
1.1 What is ODE? . 1
1.2 What is matode ? . 2
1.3 Installation . 2

2 Configuration file syntax 2
2.1 constants . 2
2.2 ode . 3
2.3 object . 3

3 Matlab interface 5
3.1 Help page . 6

4 Questions and answers 7

1 Introduction

1.1 What is ODE?

ODE is the Open Dynamics Engine by Russell Smith. While ODE is slower than
direct model simulation for most of the toy problems you will be working on,
the advantage is that it can be directly applied to the more complex systems
you will encounter in your future projects. From the ODE website at http:

//www.ode.org/:

ODE is an open source, high performance library for simulating rigid
body dynamics. It is fully featured, stable, mature and platform
independent with an easy to use C/C++ API. It has advanced joint
types and integrated collision detection with friction. ODE is useful
for simulating vehicles, objects in virtual reality environments and
virtual creatures. It is currently used in many computer games, 3D
authoring tools and simulation tools.

1

An ODE model consists of bodies (which have a certain mass and inertia),
geometries (defining the shape of a body for collisions) and joints (connecting
the bodies). A motor can be defined on a joint to apply a certain force to it.
Different joint types – such as hinges or sliders – are available, providing all the
tools to model many different robots.

ODE works by fixed-timestep numerical integration of the equations of mo-
tion that define the system of connected bodies. When bodies collide, it creates
temporary “joints” at the collision point that make sure the bodies do not inter-
sect. These joints constitute a spring-damper system with finite K and D. Both
the fixed step size (causing collision to be detected some time after they’ve
taken place) and finite K/D values (meaning bodies can “sink into” one an-
other a tiny amount) lead to inaccuracies. With well-chosen values for these
parameters, ODE can be remarkably accurate.

1.2 What is matode ?

matode is a Matlab interface to ODE. It uses Matlab’s object oriented program-
ming capabilities to make the interface as easy as possible. The main class is
odesim, which provides global interaction with the simulator such as initializa-
tion, running a simulation step, and resetting to an initial condition. It also
allows you to retrieve sensor and actuator indices, with which you can sense
joint positions and drive motors. The bodies that constitute the robot and the
joints that connect them are defined in an .xml file loaded during initialization.

1.3 Installation

1. Unzip the installation file.

2. (Linux only) Add the matode/toolbox directory to your LD LIBRARY PATH.

3. Add the matode/toolbox directory to your Matlab path.

2 Configuration file syntax

The configuration XML file describes all the bodies, joints and motors in the
system, as well as collision information and settings for the integrator. We will
now briefly explain the format of this file.

2.1 constants

The first important section is called constants. As the name implies, constants
are defined here that can be used in the rest of the file. As with other numerical
values, the constants may contain simple mathematical expressions. Constant
expressions may also reference other constants, as long as those are defined
earlier in the file (see Figure 1).

2

<configuration>

<constants>

<length>0.2</length>

<radius>0.015</radius>

<density>7874</density>

<mass>length*_pi*radius^2*density</mass>

</constants>

...

</configuration>

Figure 1: Using mathematical expressions in the constants section, referencing
previously defined constants.

2.2 ode

The ode section defines the simulation environment, and takes up the rest of
the file. It contains global settings, such as the globalK and globalD constants
for the spring-damper physics simulation used by ODE, as well as the gravity
vector gravityZ (and possibly gravityX and gravityY, if you’re so inclined).
Most important for now are the duration of a simulation step, steptime, and
how many substeps are done for each step, subsamplingfactor. In general, the
step time depends on the bandwidth requirements of your controller, while the
subsampling factor should be determined by the expected speeds and forces in
the simulation.

The ode section also defines the objects in the simulation, and collision
information (material properties, and which objects may collide). As the system
that you will be modeling does not include collisions, we will focus on defining
objects.

2.3 object

An object is a collection of rigid bodies connected by joints. An object has a
name and zero or more initialconditions, which determine the body orien-
tations when the simulation is reset. As such, the initialcondition defines
the bodyname and a desired rotation of that body (see Figure 2). The object
may also define geometries associated with its bodies, which are used in collision
detection.

Bodies represent the moving masses in an object. A body has a name, mass
and a moment of inertia defined by IXX, IYY and IZZ (and possibly other com-
binations, depending on the shape of the body you’re trying to simulate). It
can also define how it should be drawn, using the drawinfo tag (see Figure 3).
Note, though, that what is drawn may be completely unrelated to the moment
of inertia, or even the collision geometry!

When drawing, the coordinate system is centered on the body. Any objects
you draw (such as the cylinder in figure 3) are also placed in the center, unless
you specifically move it with x, y, z position tags. The positive Z axis points

3

<object>

...

<initialcondition>

<bodyname>pole</bodyname>

<rotation>

<axis>

<x>1</x>

<y>0</y>

<z>0</z>

</axis>

<angle>_pi</angle>

</rotation>

</initialcondition>

</object>

Figure 2: An initial condition for the pole body, rotating it 180 degrees around
the X axis.

upwards.

<body>

...

<drawinfo>

<cylinder comment="pole">

<radius>radius</radius>

<length>length</length>

</cylinder>

</drawinfo>

</body>

Figure 3: Using a cylinder as the graphical representation of a body. radius

and length are constants.

You can define an anchor on a body (and also in the plain ode section, in
which case it is an anchor fixed in the world) in order to connect the body with
others using joints. The anchor defines a point (x, y, z) on the body at which
the joint is fixed (see Figure 4). The coordinate system is the same as that
for drawing, so the anchor in the figure is located at the bottom of the body.
Because you can have multiple anchors per body, it also has a name.

A joint connects two anchors (anchor1 and anchor2) and can be of different
types (such as a hinge, slider, universal, etc.). Depending on the type it can
have a number of properties, such as the axis along which the movement can
occur (see Figure 5).

A joint can also have a motor associated with it, which can be actuated to
provide a certain force or torque (see Figure 6).

4

<body>

...

<anchor>

<name>world</name>

<x>0</x>

<y>0</y>

<z>-length/2+radius</z>

</anchor>

</body>

Figure 4: Defining an anchor.

<joint>

<name>joint</name>

<type>hinge</type>

<anchor1>

<bodyname>world</bodyname>

<anchorname>pole</anchorname>

</anchor1>

<anchor2>

<bodyname>pole</bodyname>

<anchorname>world</anchorname>

</anchor2>

<axisX>1</axisX>

<axisY>0</axisY>

<axisZ>0</axisZ>

...

</joint>

Figure 5: A hinge joint definition.

<joint>

...

<motor>

<type>torque</type>

</motor>

</joint>

Figure 6: A torque-controlled hinge joint motor.

3 Matlab interface

A typical script involving matode looks as follows:

sim = odesim('mountaincar.xml'); % Load configuration

vel = sim.sensor('robot.base.velocity.y'); % Define sensor

motor = sim.actuator('robot.motorjoint1.torque');% Define actuator

actuators = sim.actuate(); % Get actuation vector

for t = 0:sim.step():6 % Simulation loop (6s)

5

sensors = sim.sense(); % Measure sensor values

if sensors(vel) > 0 % Read sensor

actuators(motor) = 0.5; % Set actuator

else

actuators(motor) = -0.5;

end

sim.actuate(actuators); % Run simulation step

pause(sim.step()); % Run in real-time

end

sim.close() % Destroy simulation

Note how the sensor has been defined: it gets the absolute velocity in the
y direction of the base body in the robot object.

This simulation uses a simple controller to drive a car up a hill. While the
car doesn’t have enough torque to accomplish this task immediately, it can use
another hill to gain speed. This is called the mountain car task.

3.1 Help page

ODESIM Open Dynamics Engine interface

OBJ = ODESIM(FILE) returns an ODE simulator object.

OBJ = ODESIM(..., 'nodialog') suppresses the OpenGL dialog window.

Members:

OBJ.SENSOR Get sensor index.

S = OBJ.SENSOR(PATH) returns the sensor index for reading the

value of PATH. PATH is of the form

<object>.<joint>.<angle|anglerate|position|positionrate>

which reads the angle or angular velocity in case of a hinge

joint, or position and velocity in case of a slider.

or

<object>.<body>.<position|velocity>.<x|y|z>

which reads the absolute position or velocity of a body in

a certain direction

or

<object>.<body>.orientation.<x|y|z|w>

which an element of the orientation quaternion of a body

or

<obj>.<body>.<x|y|z|azimuth|elevation|distance>@<obj2>.<body2>

which reads the relative position, angle or distance of a

body in the coordinate frame of body2.

OBJ.ACTUATOR Get actuator index.

A = OBJ.ACTUATOR(PATH) returns the actuator index for setting the

value of PATH. PATH is of the form

<object>.<joint>.<torque|force>

Torque is used for hinge joints, force for slider joints.

OBJ.SENSE Retrieve sensor data.

6

V = OBJ.SENSE() Waits for the simulator to finish the last

step and returns the sensor values.

OBJ.ACTUATE Dispatch actuator values.

V = OBJ.ACTUATE() returns a vector for setting actuator values.

OBJ.ACTUATE(V) writes the actuator values V to the simulator

and initiates a simulation step.

OBJ.RESET Reset simulation

OBJ.RESET() resets the simulation to the initial condition.

OBJ.RESET(SEED) sets the random seed on which the initial

condition is based to SEED.

OBJ.STEP Simulator step time.

S = OBJ.STEP is the simulated time between successive steps.

OBJ.CLOSE Close dialog.

OBJ.CLOSE() closes the OpenGL dialog and destroys the simulation.

Example:

sim = odesim('mountaincar.xml');

vel = sim.sensor('robot.base.velocity.y');

motor = sim.actuator('robot.motorjoint1.torque');

actuators = sim.actuate();

for i = 1:sim.step():6

sensors = sim.sense();

if sensors(vel) > 0

actuators(motor) = 0.5;

else

actuators(motor) = -0.5;

end

sim.actuate(actuators);

pause(sim.step());

end

sim.close();

Authors:

Wouter Caarls <w.caarls@tudelft.nl>

Erik Schuitema <e.schuitema@tudelft.nl>

4 Questions and answers

Why is the first set of sensor data incorrect?

After defining a sensor, you must first perform a simulation step by calling
actuate before the proper data for that sensor is available. Because no sensors
were defined before the first step, all sensor values are 0 at that point. Note
that it is still important to read the first sensor data, because otherwise the

7

actuation would run a step behind.
The same holds for reset; a simulation step must first take place before the

new state can be read. sim.actuate(sim.actuate()); is a reasonable way of
performing such a step.

Can I set joint angles and body positions directly from
Matlab?

That feature is not available at this time. To set positions and angles, use the
fixedpoint and initialcondition clauses in the configuration file.

8

