
On-camera image processing

Data- and task parallel image processing on a mixed SIMD-
ILP platform using skeletons and asynchronous RPC*

As processors are becoming faster, smaller, cheaper, and more efficient, new opportunities arise to 
integrate them into a wide range of devices. The SMARTCAM project investigates the specific field of 
intelligent cameras, where image processing hardware is integrated in a camera.

The processing done on an intelligent camera has very specific characteristics. On the one hand, 
low-level image processing operations such as interpolation, segmentation and edge enhancement 
are local, regular, and require vast amounts of bandwidth. On the other hand, high-level operations 
like classification, path planning, and control may be irregular while typically consuming less 
bandwidth. A typical smart camera architecture template therefore contains data-parallel (SIMD) 
as well as instruction-level parallel (ILP) processors.

Heterogeneous hardware
One of the main goals of the project is keeping the system easy to program. As a consequence, 
the user should not be concerned with the heterogeneous nature of the platform, and his 
functions should map transparently to any of the processors in our architecture template. We use 
algorithmic skeletons to separate the data parallel implementation from the computation itself.

However, as a consequence of the use of heterogeneous hardware, not everything can be done 
data parallel. To keep all the processors busy, different operations need to run task-parallel, and we 
are using asynchronous remote procedure call to realize this while still presenting a familiar 
function-call interface to the user.

Data parallelism: algorithmic skeletons
By separating the parallel implementation from the actual computation, algorithmic skeletons allow 
the user to avoid the bookkeeping normally associated with parallel processing. By writing different 
skeleton implementations for different processors, they also enable us to map a user function to 
any processor in our architecture template.

Algorithmic skeletons can be thought of as higher-order functions that repeatedly call a user-pro-
vided instantiation function. They provide the structure that, combined with the instantiation, 
results in the actual operation:

void pixelop(PIXEL **in, PIXEL **out, ...) {
 for (y=0; y<HEIGHT: y++)
  for (x=0; x<WIDTH; x++)
   out[y][x] = op(in[y][x], ...);
}

inline PIXEL binarize(PIXEL p, int threshold) {
 return (p>threshold);
}

pixelop(binarize)(PIXEL **in, PIXEL **out, int threshold) {
 for (y=0; y<HEIGHT: y++)
  for (x=0; x<WIDTH; x++)
   out[y][x] = (in[y][x]>threshold);
}
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Task parallelism: asynchronous RPC
In RPC, a client program calls stubs which signal a server to perform the actual computation. In 
our case, the application is the client program running on a control processor, while the instantiated 
skeleton operations are run on the coprocessors. This alone does not imply parallelism, because 
the stub waits for the results of the server before returning. In asynchronous RPC, therefore, the 
stub returns immediately, and the client has to block on a certain operation before accessing the 
result. This allows the client program to run concurrent to the server program, as well as multiple 
server programs to run in parallel.

We provide two optimizations to this basic paradigm: data distribution and memory usage 
optimization. The data distribution optimization avoids a scatter-gather bottleneck by using 
futures to pass data between server processes instead of gathering it to the client, while the 
memory usage optimization uses pipelining to enable processors that cannot store an entire 
image to participate in the framework.

Example: double thresholding edge detection on the Philips CFT Inca+ smart camera architecture

The Philips CFT Inca+ smart camera contains a XeTaL 320-PE SIMD processor as well as a TriMedia 
5-issue VLIW processor. Pixel-level operations are run on the SIMD, while more irregular computa-
tions are carried out on the VLIW.
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As an example application, we have implemented a simple double thresholding edge detection al-
gorithm using our framework. This consists of an interpolation, grey-level edge detection, binariza-
tion at two levels, and a propagation of the high threshold over the low threshold. The propagation 
cannot run on the XeTaL processor, because it requires a frame memory, but the other steps can 
be pipelined.

The Bayer pattern interpolator, being a 2x2 filter, requires a 2-line input buffer. The horizontal and 
vertical Sobel operators share the same 3-line input buffer, while they output to a 1-line buffer for 

the absolute sum. The two thresholds again share a 1-line buffer, and their outputs are routed to 
the TriMedia. Here, the propagation step has a frame memory as internal state, and it outputs to a 
VGA display.

In summary, the XeTaL requires only 10 line memories for the 6 operations that are scheduled to 
it, while the user doesn’t have to write the program in a pipelined way: that is handled by the skel-
etons and RPC framework. Also, the data is only forwarded to the TriMedia if it is necessary for an 
operation there.
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