
On-camera image processing

Data- and task parallel image processing on a mixed SIMD-
ILP platform using skeletons and asynchronous RPC*

As processors are becoming faster, smaller, cheaper, and more efficient, new opportunities arise to
integrate them into a wide range of devices. The SMARTCAM project investigates the specific field of
intelligent cameras, where image processing hardware is integrated in a camera.

The processing done on an intelligent camera has very specific characteristics. On the one hand,
low-level image processing operations such as interpolation, segmentation and edge enhancement
are local, regular, and require vast amounts of bandwidth. On the other hand, high-level operations
like classification, path planning, and control may be irregular while typically consuming less
bandwidth. A typical smart camera architecture template therefore contains data-parallel (SIMD)
as well as instruction-level parallel (ILP) processors.

Heterogeneous hardware
One of the main goals of the project is keeping the system easy to program. As a consequence,
the user should not be concerned with the heterogeneous nature of the platform, and his
functions should map transparently to any of the processors in our architecture template. We use
algorithmic skeletons to separate the data parallel implementation from the computation itself.

However, as a consequence of the use of heterogeneous hardware, not everything can be done
data parallel. To keep all the processors busy, different operations need to run task-parallel, and we
are using asynchronous remote procedure call to realize this while still presenting a familiar
function-call interface to the user.

Data parallelism: algorithmic skeletons
By separating the parallel implementation from the actual computation, algorithmic skeletons allow
the user to avoid the bookkeeping normally associated with parallel processing. By writing different
skeleton implementations for different processors, they also enable us to map a user function to
any processor in our architecture template.

Algorithmic skeletons can be thought of as higher-order functions that repeatedly call a user-pro-
vided instantiation function. They provide the structure that, combined with the instantiation,
results in the actual operation:

void pixelop(PIXEL **in, PIXEL **out, ...) {
 for (y=0; y<HEIGHT: y++)
 for (x=0; x<WIDTH; x++)
 out[y][x] = op(in[y][x], ...);
}

inline PIXEL binarize(PIXEL p, int threshold) {
 return (p>threshold);
}

pixelop(binarize)(PIXEL **in, PIXEL **out, int threshold) {
 for (y=0; y<HEIGHT: y++)
 for (x=0; x<WIDTH; x++)
 out[y][x] = (in[y][x]>threshold);
}

Structure:

+

Instantiation:

=

Operation:

Task parallelism: asynchronous RPC
In RPC, a client program calls stubs which signal a server to perform the actual computation. In
our case, the application is the client program running on a control processor, while the instantiated
skeleton operations are run on the coprocessors. This alone does not imply parallelism, because
the stub waits for the results of the server before returning. In asynchronous RPC, therefore, the
stub returns immediately, and the client has to block on a certain operation before accessing the
result. This allows the client program to run concurrent to the server program, as well as multiple
server programs to run in parallel.

We provide two optimizations to this basic paradigm: data distribution and memory usage
optimization. The data distribution optimization avoids a scatter-gather bottleneck by using
futures to pass data between server processes instead of gathering it to the client, while the
memory usage optimization uses pipelining to enable processors that cannot store an entire
image to participate in the framework.

Example: double thresholding edge detection on the Philips CFT Inca+ smart camera architecture

The Philips CFT Inca+ smart camera contains a XeTaL 320-PE SIMD processor as well as a TriMedia
5-issue VLIW processor. Pixel-level operations are run on the SIMD, while more irregular computa-
tions are carried out on the VLIW.

=+ → →

 Structure plus instantiation yields operation

Asynchronous RPC Data distribution optimization

Memory usage optimization

Capture(&a);

...

Filter(&a, &b);

...

Segment(&b, &c);

Capture(...) {
...
}

Filter(...) {
...
}

Segment(...) {
...
}

Capture(&a);

...

Filter(&a, &b);

...

Segment(&b, &c);

Capture(...) {
...
}

Filter(...) {
...
}

Segment(...) {
...
}

Capture(&a);

...

Filter(&a, &b);

...

Segment(&b, &c);

Capture(...) {
...
}

Filter(...) {
...
}

Segment(...) {
...
}

Client Server Client Server

Client Server1 Server2 Server3

CMOS Sensor XeTaL 320-PE SIMD processor TriMedia 5-issue VLIW VGA display

Grey-level
Bayer pattern
interpolation

Read-
out

Horizontal
Sobel edge
detection

Vertical Sobel
edge detec-
tion

Absolute sum

High thresh-
old

Low thresh-
old

Transport

Transport

Propagation
Output

As an example application, we have implemented a simple double thresholding edge detection al-
gorithm using our framework. This consists of an interpolation, grey-level edge detection, binariza-
tion at two levels, and a propagation of the high threshold over the low threshold. The propagation
cannot run on the XeTaL processor, because it requires a frame memory, but the other steps can
be pipelined.

The Bayer pattern interpolator, being a 2x2 filter, requires a 2-line input buffer. The horizontal and
vertical Sobel operators share the same 3-line input buffer, while they output to a 1-line buffer for

the absolute sum. The two thresholds again share a 1-line buffer, and their outputs are routed to
the TriMedia. Here, the propagation step has a frame memory as internal state, and it outputs to a
VGA display.

In summary, the XeTaL requires only 10 line memories for the 6 operations that are scheduled to
it, while the user doesn’t have to write the program in a pipelined way: that is handled by the skel-
etons and RPC framework. Also, the data is only forwarded to the TriMedia if it is necessary for an
operation there.

Delft University of Technology*) Wouter Caarls, Quantitative Imaging, Delft University of Technology
 Pieter Jonker, Quantitative Imaging, Delft University of Technology
 Henk Corporaal, Information and Communication Systems, Eindhoven University of Technology PROGRESS project number EES.5411. http://www.qi.tnw.tudelft.nl/~wcaarls/smartcam

CMOS sensor
640x480
Bayer pattern

SIMD processor
320 PEs, 5 GOPS
16 linemems, 107 Gb/s

ILP processor
5-issue VLIW, 900 MOPS
pSOS RTOS

SDRAM
32 MB

Light

10, 16 MHz

8, 16 MHz2, I2C

VGA out

http://www.qi.tnw.tudelft.nl/~wcaarls/smartcam

