
2036
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

PAPER Special Section on Machine Vision Applications

Skeletons and Asynchronous RPC for Embedded Data and Task
Parallel Image Processing∗

Wouter CAARLS†a), Student Member, Pieter JONKER†b), and Henk CORPORAAL††c), Nonmembers

SUMMARY Developing embedded parallel image processing applica-
tions is usually a very hardware-dependent process, often using the single
instruction multiple data (SIMD) paradigm, and requiring deep knowledge
of the processors used. Furthermore, the application is tailored to a specific
hardware platform, and if the chosen hardware does not meet the require-
ments, it must be rewritten for a new platform. We have proposed the use
of design space exploration [9] to find the most suitable hardware platform
for a certain application. This requires a hardware-independent program,
and we use algorithmic skeletons [5] to achieve this, while exploiting the
data parallelism inherent to low-level image processing. However, since
different operations run best on different kinds of processors, we need to
exploit task parallelism as well. This paper describes how we exploit task
parallelism using an asynchronous remote procedure call (RPC) system,
optimized for low-memory and sparsely connected systems such as smart
cameras. It uses a futures [16]-like model to present a normal imperative
C-interface to the user in which the skeleton calls are implicitly parallelized
and pipelined. Simulation provides the task dependency graph and perfor-
mance numbers for the mapping, which can be done at run time to facilitate
data dependent branching. The result is an easy to program, platform inde-
pendent framework which shields the user from the parallel implementation
and mapping of his application, while efficiently utilizing on-chip memory
and interconnect bandwidth.
key words: design space exploration, heterogeneous architectures, con-
strained architectures, algorithmic skeletons, remote procedure call, fu-
tures, run-time scheduling

1. Introduction

As processors are becoming faster, smaller, cheaper, and
more efficient, new opportunities arise to integrate them
into a wide range of devices. However, since there are so
many different applications, there is no single processing
device that meets all the requirements of every application.
The SC project [9] investigates how an application-
specific processing device can be generated for the specific
field of intelligent cameras, using design space exploration.

The processing done on an intelligent camera has very
specific characteristics. On the one hand, low-level image
processing operations such as interpolation, segmentation
and edge enhancement are local, regular, and require vast

Manuscript received November 1, 2005.
Manuscript revised January 23, 2006.
†The authors are with the Quantitative Imaging Group, Delft

University of Technology, The Netherlands.
††The author is with the Faculty of Electrical Engineering, Eind-

hoven University of Technology, The Netherlands.
∗This work is supported by the Dutch government in their

PROGRESS research program under project EES.5411.
a) E-mail: w.caarls@tudelft.nl
b) E-mail: p.p.jonker@tudelft.nl
c) E-mail: h.corporaal@tue.nl

DOI: 10.1093/ietisy/e89–d.7.2036

amounts of bandwidth. On the other hand, high-level oper-
ations like classification, path planning, and control may be
irregular while typically consuming less bandwidth [2]. The
architecture template, on which the design space exploration
is based, therefore contains data-parallel (SIMD) as well as
instruction-parallel (ILP) processors.

One of the main goals of the project is keeping the
system easy to program. This means that one single pro-
gram should map to a wide range of configurations, of a
wide range of processors. It also means that the application
developer shouldn’t have to learn a parallel programming
language. The solution presented below is based on using
algorithmic skeletons to exploit data parallelism within each
operation, while a form of asynchronous RPC allows the op-
erations to run concurrently.

The structure of this paper is as follows: Sect. 2 reviews
some related work. Section 3 presents our prototype archi-
tecture, while Sects. 4 and 5 describe our programming en-
vironment and some optimizations. Section 6 details our
implementation, and Sect. 7 presents some results from our
prototype. Finally, Sect. 8 draws conclusions and points to
future work.

2. Related Work

Even restricting ourselves to systems that fit inside a camera,
there exist many different image processing architectures:

• DSPs, (VLIW) processors optimized for signal pro-
cessing, like the Texas Instruments TMS320C6x series
and the Philips TriMedia.
• Vector architectures, scalars or superscalars with

an SIMD coprocessing unit, like the Berkeley
VIRAM [11] project, and to a lesser degree Intel’s
MMX/SSE and Motorola’s AltiVec.
• SIMD arrays, among many others, NEC IMAP [19]

and Philips XTL [1].
• FPGAs, which can implement operations in hardware.

Recently, SIMD arrays of VLIW processors have also been
developed, like NEC’s IMAP-CE [12], and the Stanford
Imagine [17] architecture. Many systems also contain a
RISC processor for control and OS tasks.

Of these architectures, pure SIMD arrays are the most
suited for low-level image processing, because they can
most efficiently exploit the largest degree of regular data
parallelism. Superscalars and VLIWs work best with irreg-
ular problems, allowing different instructions to run within

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



CAARLS et al.: SKELETONS AND ASYNCHRONOUS RPC FOR EMBEDDED DATA AND TASK PARALLEL IMAGE PROCESSING
2037

one cycle. Vector architectures make a compromise to per-
form well on both domains, but in a multiprocessor system
it makes sense to choose domain-specific architectures for
best efficiency. Finally, FPGAs can be used for tasks that do
not map well to any of the other architectures.

Programming environments for image and signal pro-
cessing applications are also widely ranged. Tightly cou-
pled systems usually have parallel extensions to a sequen-
tial language, like Celoxica’s Handel-C [4] for FPGA pro-
gramming, or 1DC [13] for the IMAP cards. More loosely
coupled systems usually work with the concept of a task or
kernel, and differ in how these tasks are programmed and
composed.

Process networks such as YAPI [6] allow much free-
dom in specifying the tasks, but they are statically con-
nected. StreamC/KernelC [14], developed for Imagine, re-
duces the allowed syntax within a kernel, but makes the
interconnections dynamic by using streams. Their current
implementation doesn’t support task parallelism, however.
EASY-PIPE [15] does, but requires a batch of tasks to be
explicitly compiled and dispatched by the user. Their main
contribution is the use of algorithmic skeletons to make pro-
gramming the tasks easier. Finally, Seinstra [18] allows no
user specification of the tasks, instead relying on an existing
image processing library. It is also limited to data paral-
lelism, but these restrictions allow it to be more transparent
to the user, presenting a purely sequential model.

Futures were introduced in the MultiLisp [7] language
for shared-memory multiprocessors. Requesting a future
spawns a thread to calculate the value, while immediately
returning to the caller, which only blocks when it tries to ac-
cess it. Once the calculation is complete, the future is over-
written by the calculated value. Batched futures [16] apply
this concept to RPC, but with the intent to reduce the amount
of RPC calls by sending them in batches that may reference
each other’s results.

Our system uses RPC to support dynamic task paral-
lel stream programs, while the kernels are programmed us-
ing algorithmic skeletons. Our futures can reference results
from operations that are executed at different RPC servers.
Using these mechanisms, much parallelism can be exploited
even when it is not specifically kept in mind, but for full ef-
ficiency some care will be needed.

3. Architecture

Our prototype architecture is the Philips CFT Inca+ proto-
type (see Fig. 1). This is a minimal implementation of our
architecture template, consisting of one XTL [1] SIMD
processor and one TriMedia VLIW processor; they can run
concurrently to exploit task parallelism. There is one video
speed channel from the sensor to the XTL and one video
speed channel from the XTL to the TriMedia. The TriMe-
dia can program the XTL via the I2C bus. The architec-
ture is described in more detail in [10], and is schematically
summarized in Fig. 2.

The XTL chip consists of 320 PEs and a control pro-

Fig. 1 Inca+ prototype smart camera.

Fig. 2 Inca+ prototype architecture.

cessor, running at pixel clock. At VGA resolution with a
pixel clock of 16 MHz and 30 fps, it can process more than
500 instructions per pixel, and has enough memory to store
16 image lines. The TriMedia is a 5-way VLIW proces-
sor running at 180 MHz. At the same video speed that
means around 100 operations per pixel, but the pixel ac-
cesses may be irregular. An external 32 MB SDRAM pro-
vides enough storage for most applications at this resolution.
This architecture is suited for image processing because it
takes advantage of the fact that image processing applica-
tions progress from low-level, high-bandwidth operations to
high-level, low-bandwidth operations. Due to the exploited
parallelism, its power efficiency is vastly improved over nor-
mal microprocessors.

One drawback is that, because there is no channel from
TriMedia to XTL, the TriMedia cannot be used as a tem-
porary frame store. This will be remedied in a new prototype



2038
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

platform that is under development. It contains an FPGA
for routing and intermediate-level processing, and the X-
TL may also be decoupled from the pixel clock, achieving
7.7 10-bit GMACs per second.

4. Programming

Our programming environment is based on C, to provide an
easy migration path. In principle, it is possible (although
slow) to write a plain C program and run it on our system.
In order to exploit concurrency, though, it is necessary to
divide the program into a sequence of image processing op-
erations, and to string these together using function calls.
Parts of the program which cannot easily be converted can
be left alone unless the speedup is absolutely necessary.

The main program, which calls the operations and in-
cludes the unconverted code, is run on a control processor,
while the image processing operations themselves are run on
the coprocessors that are available in the system (the control
processor may also act as a coprocessor). Only this main
program can make use of global variables; because of the
distributed nature of the coprocessor memory, all data to and
from the image processing operations must be passed using
parameters.

4.1 Within-Operation Parallelism

The main source of parallelism in image processing is the
locality of pixel-based operations. These low-level opera-
tions reference only a small neighborhood, and as such can
be computed mostly in parallel. Another example is object-
based parallelism, where a certain number of possible ob-
jects or regions-of-interest must be processed. Both cases
refer to data parallelism, where the same operation is exe-
cuted on different data (all pixels in one case, object pixels
or objects in the other).

Data parallel image processing operations map partic-
ularly well on linear SIMD arrays (LPAs, [8]). However,
since we don’t want the application developer to write a par-
allel program, we need another way to allow him to specify
the amount of parallelism present in his operations. For this
purpose, we use algorithmic skeletons. These are templates
of a certain computational flow that do not specify the actual
operation, and can be thought of as higher-order functions,
repeatedly calling a kernel function for every computation.
Take the very simple binarization in program 1:

Program 1 Binarization

for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)

out[y][x] = (in[y][x]>128);

Using a higher-order function, PixelToPixelOp, we
can separate the structure from the computation. Pixel-
ToPixelOp will implement the loops, calling the binarize
kernel every iteration. See program 2.

Program 2 Binarization implemented using a higher-order function

int binarize(int value)
return (value>128);

void PixelToPixelOp(int (*op)(int),
int in[HEIGHT][WIDTH], int out[HEIGHT][WIDTH])

for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)

out[y][x] = op(in[y][x]);

PixelToPixelOp(binarize, in, out);

Note that implementing PixelToPixelOp column-wise
instead of row-wise – by reversing the loops – does not
change the result, because there is no way for op to reference
earlier results (side effects are not allowed). It can be said
that by specifying the inputs and outputs of the kernel func-
tion, the skeleton characterizes the available parallelism. So,
by choosing a skeleton, the programmer makes a statement
about the parallelism in his operation, while not specifying
how this should be exploited. This freedom will allow us to
optimally map the operation to different architectures.

Another benefit is that the image processing library
normally shipped with DSPs and other image processors
is replaced by a skeleton and kernel library, which is more
general and thus less in need of constant updates, since the
skeletons it provides and uses for its own kernels can be used
by the application developer as well. Of course, highly spe-
cialized operations can still be provided in a fixed library,
provided they meet the requirements of the framework dis-
cussed in Sect. 5.2.

Not all operations can be data-parallelized as easily as
pixel operations; more irregular operations place increas-
ing demands on the autonomy and interconnection of the
processing elements. For example, for efficient implemen-
tation, local neighborhood operations are straightforward,
recursive neighborhood operations require indirect address-
ing, run-length encoding requires non-local communication,
and edge following is mostly sequential. However, even in
the sequential case the skeleton approach can still be used,
if only to facilitate programming instead of parallelization.
If specialized hardware then becomes available, it is easier
to make use of it.

4.2 Between-Operation Parallelism

An image processing application consists of a number of op-
erations described above, surrounded by control flow con-
structs. In order to provide an easy migration path, these
operations can be called as higher-order functions, although
the kernel functions are inlined at compile-time to ensure
efficiency. Furthermore, because our hardware platform is
heterogeneous, it is important that multiple of these opera-
tions are run concurrently, as not all processors can be work-
ing on the same computation. We are therefore using asyn-
chronous RPC calls as a method to exploit this task-level
parallelism.



CAARLS et al.: SKELETONS AND ASYNCHRONOUS RPC FOR EMBEDDED DATA AND TASK PARALLEL IMAGE PROCESSING
2039

In RPC, the client program calls stubs which signal a
server to perform the actual computation. In our case, the
application is the client program running on the control pro-
cessor, while the skeleton instantiations are run on the co-
processors. This alone does not imply parallelism, because
the stub waits for the results of the server before returning.
In asynchronous RPC, therefore, the stub returns immedi-
ately, and the client has to block on a certain operation be-
fore accessing the result. This allows the client program to
run concurrent to the server program, as well as multiple
server programs to run in parallel, as shown in program 3.

Program 3 Running client and server code in parallel using asyn-
chronous RPC

IMAGE in, out1, out2;
Read(in);
block(Read);

PixelToPixelOp(op1, in, out1);
PixelToPixelOp(op2, in, out2);
/* ...Concurrent client code ... */

block(op1);
block(op2);

However, this still has the disadvantage of requiring the
client program to wait on the completion of in before pro-
ceeding, even though it never uses the results except to pass
them on to other RPC calls. To address this problem, Mul-
tiLisp [7] introduced the concept of futures, placeholder ob-
jects which are only blocked upon when the value is needed
for a computation. Since simple assignment is not a compu-
tation, passing the value to a function doesn’t require block-
ing; once the called function needs the information, it will
block itself until the data is available, without blocking the
client program. Program 4 demonstrates this.

Program 4 Using futures to avoid blocking when passing variables be-
tween RPC calls

IMAGE in, out1, out2;
SCALAR out;
Read(in);
PixelToPixelOp(op1, in, inter1);
PixelToPixelOp(op2, in, inter2);
PixelReductionOp(op3, inter1, inter2, out);
/* ...Concurrent client code ... */

block(out);
/* ...Dependent client code ... */

In this piece of code, PixelReductionOp still cannot
run in parallel with both PixelToPixelOps, though, because
it has to wait for their output (the inter1 and inter2 frames) to
become available, even though the client program can con-
tinue. Indeed, the RAW dependency makes it impossible to
run them concurrently on the same image, but it is possible
to run them concurrently on different images. We therefore
introduce the concept of a composite operation, which be-
haves the same as a normal operation, except that it consists
of more than one sub-operation. As such, it may wait for
data independently of the calling program; see program 5.

Program 5 Using composite operations to avoid blocking the entire pro-
gram when only a part has to wait

ProcessImage(IMAGE in)
IMAGE inter1, inter2;
SCALAR out;
PixelToPixelOp(op1, in, inter1);
PixelToPixelOp(op2, in, inter2);
PixelReductionOp(op3, inter1, inter2, out);
/* ...Concurrent client code ... */

block(out);
/* ...Dependent client code ... */

IMAGE in;
while(1)

Read(in);
CompositeOp(ProcessImage, in)
/* ...More client code ... */

In this instance, that allows us to run different stages
of different images in parallel, because the next Read (and
ProcessImage, once Read finishes) can start right after the
previous one finished, instead of having to wait for the pro-
cessing. Thus, in a fully loaded pipeline, Read is work-
ing on one image, the two PixelToPixelOps on another, and
PixelReductionOp on a third.

Note that the functions are called separately for each
image frame. As such, function parameters and their se-
quencing can dynamically change each frame, possibly
based on the result of earlier calls.

5. Optimizations

While our futures-like implementation is much less elab-
orate than MultiLisp’s (requiring, for example, explicit
blocks on results, although these could be inserted by the
compiler), it does tackle two other problems: data distri-
bution and memory usage. Both originate from our archi-
tecture template, which features distributed-memory proces-
sors with a relatively low amount of on-chip memory.

Furthermore, although the skeletons are called as
higher-order functions in order to provide an easy migration
path, we avoid the function call overhead by using source-
to-source transformations. Using transformations also al-
lows us to translate between different target processor lan-
guages, and to provide an efficient way to specify skeletons
that are polymorphic in the number and types of their argu-
ments. It also allows us to efficiently merge different opera-
tions.

5.1 Data Distribution

The data generated by most image processing operations is
not accessed by the client program, but only by other oper-
ations. This data should therefore not be transported to the
client (control) processor. In order to achieve this, we make
a distinction between images and other variables.

Images are never sent to the control processor unless
the user explicitly asks for them, and as such no memory
is allocated and no bandwidth is wasted. Rather, they are



2040
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

transported between coprocessors directly, thus avoiding the
scatter-gather bottleneck present in some earlier work [15].
All other variables (thresholds, reduction results, etc.) are
gathered to the control processor and distributed as neces-
sary. These can be used without an explicit request.

The knowledge about which data to send where simply
comes from the inputs and outputs to the skeleton opera-
tions: image variables are used to specify the connections
between operations instead of actually holding images, and
are also known as streams. Coprocessors are instructed to
send the output of an operation to all peers that use it as an
input.

5.2 Memory Usage

Our concern about memory usage stems from the fact that
especially SIMD linear processor arrays for low-level im-
age processing may not have enough memory to hold an
entire frame, let alone multiple frames if independent tasks
are mapped to it. These processors are usually programmed
in a pipelined way, where each line of an image is succes-
sively led through a number of operations. We would like
our system to conserve memory in the same way, and have
therefore specified all our operations to read from and write
to FIFO buffers.

The distribution mechanism allocates these buffers, and
sets up transports as described above. The operations them-
selves read the needed information from the buffer, process
it, and write the results to another buffer. A method is pro-
vided to signal that no more data will be forthcoming. This
conserves memory, because even a series of buffers is gener-
ally much smaller than a frame. Simultaneously, it hides the
origin of the data, making the operations independent of the
producers of their input and the consumers of their output.

As an added advantage, this buffer scheme results in
more fine grained task parallelism. Instead of working on
two different images, operations can work on different parts
of the same image, and this benefits the latency of the out-
put. Of course, this only works if the operations support
piece-by-piece processing; a frame memory is still required
if they do not. Fortunately, many low-level operations sup-
port this.

5.3 Skeleton Merging

It is advantageous, both for reuse and the freedom of map-
ping, to split a program into as many kernels as possible.
However, this results in a lot of scheduling overhead, espe-
cially on SIMD processors where hundreds of instructions
are executed each cycle. On ILP processors it significantly
reduces the amount of exploitable instruction-level paral-
lelism.

We avoid this by merging operations that use compat-
ible skeletons. Our compiler finds sequences of compati-
ble skeleton calls in the application program, and uses in-
formation carried by the skeletons to merge them. Apart
from specifying how to order the instructions, this informa-

tion also contains the appropriate buffer sizes and delays, so
that the synchronization of the operations is preserved. Cur-
rently, we can merge pixel operations on the one hand, and
neighborhood and recursive neighborhood operations on the
other.

After merging, the sequence of skeleton calls is re-
placed by a single call to the merged operation. Of course,
this should only happen when the operations are always run
together, in the same order and on the same processor. The
ordering is preserved by only merging skeleton calls in the
same basic block of the program, while the mapping infor-
mation can be gathered from simulation.

6. Implementation

The skeleton instantiation and merging is discussed else-
where [3], and in this paper we will discuss only our RPC
system. This system has been implemented on both a net-
work of workstations (NOW) and the Inca+ prototype. The
traces in this section were generated on the NOW, while the
performance figures in Sect. 7 are gathered from the proto-
type implementation.

The library consists of the following components: a
front-end that enqueues operations, a mapper that maps op-
erations to processors, and a dispatcher that dispatches op-
erations, variables, and sets up buffers and transports. If
administrative data is not destroyed, a trace generator can
write a trace once the program finishes. This trace can be
used to benchmark individual operations to assist the map-
ping.

6.1 Enqueueing

Each call to an RPC stub enqueues that operation in a list.
All arguments are passed by reference, and are tracked by
their address. As such, an operation that uses a variable that
hasn’t been produced yet can be marked as a consumer of
that variable, such that it will be sent as soon as it is avail-
able. Note that this means our concept of futures is limited
to their use in stub calls, and using an output variable out-
side of one requires an explicit block (although these may
be inserted by a compiler).

As a consequence of the use of buffers, it is necessary
to know how many consumers a stream will eventually have,
because the data in the (cyclic) buffer may not be overwrit-
ten unless it has been read by all consumers. We have cho-
sen to require a finalization once all consumers have been
specified. This makes it easy to conditionally add readers.

Composite operations are a special case. These are im-
plemented using threads, but we want them to behave as
much as function calls as possible. This means that their
arguments should be passed by value, and thus we need to
make explicit copies of their input arguments. If such an
input is a future, a new instance is created, which allows
the composite operation to independently block on it. The
same goes for stream inputs and outputs, which must be in-
dependently finalized (although there is an implicit final-



CAARLS et al.: SKELETONS AND ASYNCHRONOUS RPC FOR EMBEDDED DATA AND TASK PARALLEL IMAGE PROCESSING
2041

ization at the end of the operation). Composite operations
may be arbitrarily nested.

We use a single assignment semantic, such that each
buffer only has one writer. This means that if an output vari-
able is reused, it points to a different buffer.

6.2 Mapping

Mapping means selecting the best processor for an opera-
tion to run on, optimizing throughput and latency. A static
mapping can be generated if the course of the program is
known. This is the case in parts of the program between
data-dependent branches, called basic blocks. A problem
is that we cannot finish one basic block before starting the
next, as this requires a frame memory for every image that is
passed between the two, and would effectively reduce task
parallelism to zero at each branch.

Fortunately, the granularity of our operations is quite
large (operating on images instead of single values), so we
can spend a bit of time determining a mapping dynamically
at run time. Currently, we employ a greedy strategy that
will map an operation to the processor that most quickly
produces its outputs, according to a simple network flow
model. This model assumes that a processor’s cycles or a
connection’s bandwidth are equally distributed over all op-
erations or streams that are mapped to it. If an operation or
stream can’t use its share, the excess is distributed over the
other contenders, etc.

6.3 Dispatching

After an operation has been mapped to a processor, it can be
dispatched. During skeleton instantiation, each operation is
assigned an identifier, and this is first sent to the coprocessor.
Next, stream arguments are checked; if the stream doesn’t
have a buffer on the processor, a new buffer is created, and a
transport is set up between the source buffer and the newly
created one. Then, the buffer id is sent. Finally, non-stream
input arguments are marshalled and sent as well.

The operation starts as soon as all its arguments have
been received. It will run until it blocks because of reading
an empty buffer, or writing a full buffer. The coprocessor
then selects a new task that isn’t blocked, and so on. In this
way, the buffer sizes define the task switching granularity.

Even the SIMD processors run a (very light-weight)
task scheduler. However, because XTL runs synchronous
to the pixel clock, the operations cannot block, and always
process one line of the image.

Once the operation has finished, it signals the control
processor, and transmits its scalar results, if any. If these re-
sults are needed by another operation, they are sent back by
the control processor. Any futures referencing the results are
resolved by copying the data to their addresses, and threads
blocking on them are unblocked.

Fig. 3 Trace of a ball detection algorithm.

6.4 Trace Generation and Benchmarking

The mapping process needs information about the perfor-
mance of each operation on each processor. This requires
benchmarking all operations independently. By keeping a
trace and storing all streams during a simulation run, we can
generate the required information for such an independent
benchmark: if we preload the input streams and preallocate
output streams, we can get an estimated performance figure
in the absence of network bandwidths and competing oper-
ations.

Figure 3 shows such a trace, with operations in boxes.
Buffers are unboxed, and show the name of the file which
stores the content; the line numbers refer to the place of the
operation in the client program.

7. Results

We have implemented the ball detection algorithm of Fig. 3
on the architecture described in Sect. 3. In this algorithm,
the Bayer pattern sensor output is first interpolated; then the
Sobel X and Sobel Y edge detection filters are run and com-
bined to get the edge direction and magnitude. The edge
direction is masked when the magnitude is below a certain
threshold, and around the remaining edge pixels a circle seg-
ment is drawn in a Hough accumulation space. The maxi-



2042
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

Table 1 Timing results of the ball detection algorithm.

Trial Processing time
Single operation (TriMedia) 100 ms
Split operations (TriMedia) 160 ms
Merged operations (TriMedia) 134 ms
Parallel (XTL+TriMedia) 54 ms

mum of the accumulation space is taken, and used as the
position of the ball.

The Hough transform cannot run on the XTL, be-
cause it requires a frame memory and dynamic indirect ad-
dressing. As there is no channel back to the SIMD proces-
sor in our prototype architecture, this means the maximum
search of the Hough transform has to be performed on the
TriMedia as well.

Four situations were compared: one in which the entire
algorithm was implemented in a single operation on the Tri-
Media, as a baseline for how a sequential application would
be written. Next, the operation was split into tasks as shown
in the trace, and all tasks were mapped to the TriMedia; this
shows the overhead caused by the task switching and buffer
interaction. Then, we applied skeleton merging to bring
down the overhead. Finally, all low-level operations were
mapped to the XTL, while the Hough transform, maxi-
mum search and display were mapped to TriMedia; this re-
sembles the situation as it would run on our system.

Because XTL only has 16 line memories, the buffers
between the filters were 1 line. On the TriMedia, they were
25 lines, to reduce context switching. An allocate-and-
release scheme was used on the TriMedia, so that no extra
state memory was needed in the filters, and no unnecessary
copies were made. See Table 1.

As can be seen, a fine-grained kernelization of the al-
gorithm results in a significant overhead. By merging the
kernels, allowing the compiler to exploit instruction paral-
lelism and data locality as well as avoiding context switch-
ing, we reduce the overhead by half. Finally, by mapping all
the low-level operations to the SIMD processor, the program
runs almost twice as fast as the ILP-only version.

Note that in the last case the filtering and transform
are done task parallel, and the processing time is bounded
by the slowest operation, which is the transform (if not run
in parallel, the pixel speed links would add an extra frame-
time). In fact, the speedup depends very much on the input
image and types of operations. In the case of the ball detec-
tion algorithm on our prototype, the SIMD processor is only
processing at half speed. Amdahl’s law applies, and in order
to increase the throughput of applications with large sequen-
tial parts, we need a faster ILP processor, or to overlap the
computation of multiple frames on different processors.

The effectiveness of skeleton merging on the SIMD
speed cannot be gathered from this application, as its speed
is constrained by the (synchronous) pixel clock. However,
a cycle-accurate simulator has verified that the dynamic in-
struction count is reduced by a factor of 1.35, and this will
be larger for asynchronous systems.

8. Conclusions and Future Work

We have presented a system in which an application devel-
oper can construct a parallel image processing application
with minimal effort. Data parallelism is captured by specify-
ing the way to process a single pixel or object, with the sys-
tem handling distribution, border exchange, etc. Task paral-
lelism of these data parallel operations is achieved through
an RPC system, preserving the semantics of normal func-
tion calls as much as possible. Results from an actual proto-
type architecture have shown that the system works, and can
achieve a significant speedup by using an SIMD processor
for low-level vision processing.

Currently, streams are dynamically typed, and this can
result in runtime errors. We wish to investigate static typing
of streams, and type promotion rules. Secondly, we wish
to include memory considerations in the mapping decision,
so that operation combinations requiring too much memory
will not be mapped to memory-constrained processors. We
are also developing a new hardware platform and SIMD pro-
cessor that will allow us to investigate more complex and
demanding applications, such as real-time stereo vision.

References

[1] A.A. Abbo, R.P. Kleihorst, L. Sevat, P. Wielage, R. van Veen,
M.J.R. op de Beeck, and A. van der Avoird, “A low-power paral-
lel processor IC for digital video cameras,” Proc. 27th European
Solid-State Circuits Conference, pp.137–140, Carinthia Tech Insti-
tute, Villach, Austria, Sept. 2001.

[2] W. Caarls and P.P. Jonker, “Benchmarks for smartcam develop-
ment,” Proc. ACIVS 2003, Ghent University, pp.81–86, Sept. 2003.

[3] W. Caarls, P.P. Jonker, and H. Corporaal, “Algorithmic skeletons
for stream programming in embedded heterogeneous parallel image
processing applications,” Proc. 20th IEEE International Parallel and
Distributed Processing Symposium, April 2006 (published).

[4] Celoxica Limited, Handel-C Language Reference Manual, 2003.
[5] M. Cole, Algorithmic Skeletons: Structured Management of Paral-

lel Computation, Research Monographs in Parallel and Distributed
Computing, The MIT Press, 1989. ISBN 0-273-08807-6.

[6] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf,
J.-Y. Brunel, W.M. Kruijtzer, P. Lieverse, and K.A. Vissers, “YAPI:
Application modeling for signal processing systems,” Proc. 37th De-
sign Automation Conference (DAC2000), pp.402–405, June 2000.

[7] R.H. Halstead, Jr., “Multilisp: A language for concurrent symbolic
computation,” ACM Trans. Programming Languages and Systems,
vol.7, no.4, pp.501–538, Oct. 1985.

[8] P.P. Jonker, “Why linear arrays are better image processors,” Proc.
12th IAPR International Conference on Pattern Recognition, vol.III,
pp.334–338, IEEE Computer Society Press, Los Alamitos, CA, Oct.
1994.

[9] P.P. Jonker and W. Caarls, “Application driven design of embedded
real-time image processors,” Proc. Acivs 2003 (Advanced Concepts
for Intelligent Vision Systems), pp.1–8, Ghent University, Sept.
2003.

[10] R. Kleihorst, H. Broers, A. Abbo, H. Embrahimmalek, H. Fatemi,
H. Corporaal, and P. Jonker, “An SIMD-VLIW smart camera archi-
tecture for real-time face recognition,” Proc. ProRISC 2003, pp.1–7,
Technology Foundation STW, Nov. 2003.

[11] C. Kozyrakis, Scalable Vector Media Processors for Embedded Sys-
tems, PhD Thesis, University of California at Berkeley, May 2002.



CAARLS et al.: SKELETONS AND ASYNCHRONOUS RPC FOR EMBEDDED DATA AND TASK PARALLEL IMAGE PROCESSING
2043

[12] S. Kyo, T. Koga, S. Okazaki, and I. Kuroda, “A 51.2 gops scal-
able video recognition processor for intelligent cruise control base
on a linear array of 128 four-way vliw processing elements,” IEEE
J. Solid-State Circuits, vol.38, no.11, pp.1992–2000, Nov. 2003.

[13] S. Kyo, S. Okazaki, and I. Kuroda, “An extended c language and
compiler for efficient implementation of image filters on media ex-
tended micro-processors,” Proc. ACIVS 2003, pp.234–241, Ghent
University, Sept. 2003.

[14] P. Mattson, A Programming System for the Imagine Media Proces-
sor, PhD Thesis, Dept. of Electrical Engineering, Stanford Univer-
sity, 2001.

[15] C. Nicolescu and P.P. Jonker, “EASY PIPE—an “EASY to use”
Parallel Image Processing Environment based on algorithmic skele-
tons,” Proc. 15th International Parallel and Distributed Processing
Symposium, pp.1151–1157, April 2001.

[16] P. Bogle and B. Liskov, “Reducing cross domain call over-
head using batched futures,” Proc. Ninth Annual Conference on
Object-Oriented Programming Systems, Language, and Applica-
tions, pp.341–354, ACM Press, 1994.

[17] S. Rixner, Stream Processor Architecture, PhD Thesis, Dept. of
Electrical Engineering and Computer Science, MIT, 2000.

[18] F.J. Seinstra and D. Koelma, “Lazy parallelization: A finite state ma-
chine based optimization approach for data parallel image process-
ing applications,” Proc. 17th International Parallel and Dsitribuied
Processing Symposium, April 2003.

[19] Y. Fujita, N. Yamashita, and S. Okazaki, “IMAP-Vision: An SIMD
processor with high-speed on-chip memory and large capacity ex-
ternal memory,” Proc. 1996 MVA Workshop, ed. M. Takagi, IAPR,
pp.170–173, 1996.

Wouter Caarls gained an M.Sc. in Artificial
Intelligence from the University of Amsterdam,
and is now a PhD student at the Quantitative
Imaging Group, Department of Imaging Science
and Technology, Faculty of Applied Sciences,
Delft University of Technology.

Pieter Jonker gained an M.Sc. in Electrical
Engineering from the University of Twente, and
a Ph.D. in Physics from the Delft University of
Technology. He is now an associate professor
at the Quantitative Imaging Group, Department
of Imaging Science and Technology, Faculty of
Applied Sciences, Delft University of Technol-
ogy.

Henk Corporaal gained an M.Sc. in Physics
from the University of Groningen, and a Ph.D.
in Electrical Engineering from the Delft Univer-
sity of Technology. He is now a full professor in
Embedded System Architectures at the Faculty
of Electrical Engineering, Eindhoven University
of Technology.


