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ABSTRACT

The PROGRESS/STW SmartCam project aims to quantify the

design of smart camera processors by providing a well-defined

design trajectory. This trajectory includes specifying an archi-

tecture template, creating a parallelising compiler, and using

simulation and analysis tools to find an optimal mapping of the

intended application to some instance of the template. In order to

design and tune the trajectory, however, we need applications to

benchmark and test the tooling. This paper describes the selec-

tion and subsequent decomposition of these applications, and we

conclude that algorithmic kernels can be used to test the archi-

tecture and analysis tools, while we need real-world applications

to verify the compiler trajectory.

1. INTRODUCTION

Smart cameras are devices that integrate a vision sensor

and image processing hardware in a single, small pack-

age. Current solutions use off-the-shelf digital signal pro-

cessors, which are not optimally suited for the image pro-

cessing domain. In the SmartCam project [1], we suggest

the use of SIMD (single instruction, multiple data) pro-

cessors for low-level operations such as filtering and col-

our segmentation, and ILP (instruction-level parallel) pro-

cessors for intermediate- and high level algorithms such

as object detection, feature extraction, and classification

(see figure 2). SIMD processors have been used for im-

age processing since the early 1970s [2], and more recent

miniaturisation efforts have shown them to be useful in

near-sensor processing tasks [3, 4]. ILP processors can

extract the more irregular operational parallelism in high-

level tasks, while task parallelism is exploited by having

multiple processors.

Constraints such as processing power, power consumption

and cost vary wildly between applications, and thus there

is no single solution that fits all needs. We wish to quantify

the selection of a suitable architecture by providing an

integrated trajectory for the design of smart camera pro-

cessors. This trajectory will take a C program annotated

with parallelisation opportunities and various constraints

like frame rate and cost as input, and suggest architecture

possibilities by parallelising, simulating and analysing the

application (see figure 3). We will base the tools for this

project on our previous work in the areas of parameterised

ILP design [5], image processing environments [6] and

automatic parallelisation [7].

Before starting the integration, enhancement, and Smart-

Cam-specific tuning of the tooling, we first need to re-

search which range of applications we want to support, as

this directly influences our architecture template in terms

of available operational-, data-, and task-level parallelism

and required connectivity. We will then find and extract

the algorithmic kernels they use for our simulation and

analysis tools. Finally, we need to acquire actual C im-

plementations of these algorithms in order to verify our

parallelisation and mapping environment.

2. APPLICATIONS

The application areas of smart cameras range from

battery-run toys to high speed industrial applications. We

will use the following definition to limit the scope of ap-

plications we are interested in: “A Smart Camera is a

small user programmable camera which, in its primary

mode of operation, outputs not images but control

decisions, symbolic data, and/or small (processed)

regions of interest.”. We specifically include program-

mability, because in our view the continuing evolution

of image processing algorithms precludes the sole use of

hardwired ASICs. As shown in figure 2, special-purpose

function units can of course be used to speed up certain

frequently used operations.

The type of output limits the class of applications to those

in which not only low-level (image to image) processing

is done, but intermediate and perhaps high-level as well.

This still covers a host of applications, though; we will fo-

cus on the following representative set, which was selec-

ted from a larger set of applications with which we have

experience [8].

PDAs with integrated cameras for purposes such as

owner recognition, localisation, and distributed

model building and path planning [9]. These need
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to be low-power and very small.

Security camera (networks) for tracking and identify-

ing suspects. There could be inter-camera commu-

nication for handover purposes.

Industrial inspection tasks such as strip steel inspection

might need multiple cameras to cover the product

width, and feature extraction over camera boundar-

ies, requiring high-speed interconnections for fast

strip speeds (in excess of 60 km/h).

Intelligent transport systems (ITS) in cars that use lane

detection and object/traffic sign detection for intel-

ligent cruise control. Fast processing is needed for

high speeds, and there might be fault tolerance re-

quirements.

This set includes devices with different size-, power-, and

processing requirements, as well as a good collection of

image processing algorithms. This is important to be able

to test the simulation and analysis tools with a wide vari-

ety of well-defined algorithmic kernels. As an additional

benefit, we have access to actual implementations of these

systems, which allows us to test the compilation and par-

allelisation tools in a real-world environment.

3. ALGORITHMS

We can decompose the chosen applications into a

sequence of image processing algorithms. Our architec-

ture template will need to be able to run those algorithms

efficiently, such as to minimise power consumption and

cost. We thus need to know the available parallelism and

the connectivity requirements the algorithms pose; for this

we will use the kernels of these algorithms as benchmarks

and use the profiling information to steer our architecture

template and the instantiation thereof. We need to use this

domain-specific kernel set because more general bench-

mark suites such as EEMBC [10] and MediaBench [11]

include lots of compression algorithms, which are very

specific and generally not applicable to our domain, and

do not include some other important algorithms, such as

classifiers.

In the following subsections, we describe a number of al-

gorithmic kernels that are used in the chosen application

set. Since they do not interface with other systems except

by input and output, it is possible to run them individually

on prerecorded data and extract clean profiling informa-

tion. We have split the kernels according to the proto-

typical image processing flow of low-level, intermediate-

level and high-level tasks (see figure 1).

Low−level image processing

Intermediate−level image processing

High−level image processing

Symbolic data, control decisions, etc.

Symbolic data

Enhanced image

Image

Figure 1: Prototypical image processing flow.

3.1. Low-level algorithmic kernels

Low-level image processing algorithms take an image as

input and output another image, which has a direct pixel

correspondence with the input:

Colour space conversion is usually the first step for seg-

mentation operations, which work better in HSI,

YUV, or dedicated colourspaces instead of RGB. It

is a point operation, which means that it can be done

in parallel for all pixels without communication.

Colour segmentation is used for skin tone recognition

for face detection in PDAs and security cameras,

and object detection for ITS. This is also a point

operation.

Generalised convolution is a superclass of operations

like noise removal, edge detection, etc. These oper-

ations are used in all applications as preprocessing

steps. This is a local neighbourhood operation,

meaning that for each pixel information about its

immediate neighbourhood is needed for processing.

Distance transform calculates for each pixel the

distance to the nearest edge. This is sometimes used

as a preprocessing step for template matching, such

as in traffic sign detection for ITS. It can be per-

formed in two steps by using a recursive neighbour-

hood operation [12]. This means that some neigh-

bouring output pixels are required, limiting the

amount of available parallelism.

Histogram equalisation is often used to preprocess im-

ages before feeding them to a pattern recognition
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system, such as in face detection for PDAs and se-

curity cameras. Histogramming is a global oper-

ation, requiring information from all pixels, but it

can be parallelised because histogram levels are in-

dependent and the reduction is associative [13].

Stitching the images from multiple cameras together

such as in steel inspection requires translation, scal-

ing and rotation operations. Image borders need to

be exchanged, and stitched to the image according

to some (precalibrated) parameters. Depending on

the frame rate, alignment and overlap of the cam-

eras, high-speed interconnect could be necessary.

3.2. Intermediate level algorithmic kernels

Intermedate level image processing extracts objects, fea-

tures or other information from images, and outputs this

in symbolic data structures. Several are used in our ap-

plication set (only a subset is given here):

Hough transform extracts shapes from an image by

transforming it into a parameter space and finding

the local maxima in this space [14]. It can be used

for contour detection in PDA localisation and lane

following in ITS. The transformation contains par-

allelism that might be difficult to extract, and needs

to be analysed. The maximum search is a local

neighbourhood operation.

Connected component analysis finds connected sets of

pixels belonging to the same object, allowing the

extraction of face regions in PDAs and security

cameras, or asphalt regions in ITS. The way of

presenting these objects to a high-level algorithm

can make it difficult to parallelise, while the ba-

sic operation is a recursive neighbourhood opera-

tion much like in the distance transform.

Centre-of-gravity calculation on segmented or grey-

valued images is used for feature extraction in in-

dustrial inspection. It is a global operation (within

a certain region of interest (ROI)), but there is inde-

pendence between X and Y components, and again

associativity in the reduction like in histogramming.

Statistical operations on various low-level transformed

images such as gradient magnitude and direction,

are also used in feature extraction. There is quite

a range of possible operations, but we will stick to

average, median and variance, as they are abundant

in our steel inspection application.

3.3. High level algorithmic kernels

High level image processing algorithms transform sym-

bolic data structures into other symbolic data, decisions,

or control signals. This ranges from simple post-process-

ing to compute-intensive classifiers; we will only use al-

gorithms with well-defined computation intensive kernels:

Coordinate transformations on lines and objects found

in the image are needed to convert image coordin-

ates to world coordinates in the localisation of

PDAs, and object positioning in security cameras

and ITS. This is usually done by multiplying homo-

geneous-coordinate matrices and vectors, involving

numerous multiply-and-accumulate operations1.

Neural network classifiers are used in face recognition

for PDAs and security cameras, and fault detection

in industrial inspection. Feeding a large input vec-

tor (5000 inputs is not unheard of in face recogni-

tion tasks [15]) through the network requires a vast

amount of floating point multiply-and-accumulate

operations and activation function evaluations. The

computation can be done in parallel by rotating the

data, but storage requirements for the weights might

be an issue.

Support vector classifiers have been used in industrial

inspection for the classification of defects. The clas-

sification phase is very similar to neural networks,

basically consisting of computing and adding ker-

nel functions between the new point and a number

of support vectors, and is easy to parallelise. Us-

ing specialised kernel functions, however, may al-

low for fixed point solutions.

Path planning is used in PDAs for navigation. Many

path planning and search algorithms, such as depth

first, breadth first, uniform cost, A*, etc. can be

captured in the same kernel and differ only in the

order in which nodes are put in an “Open list”. Par-

allelisation problems lie in updating this queue, but

algorithms do exist [16].

4. IMPLEMENTATIONS

While using algorithmic kernels is very convenient for ar-

chitecture testing and simulation, leading to nice task- and

data parallelism exploitation, real-world applications are

rarely this well implemented. It is thus imperative that

we use actual application code to verify our parallelising

compiler.

We propose the use of annotations in order to mold legacy

applications into parallelisable programs, and a set of lib-

rary functions for new and revised applications. Naturally,

optimised library routines will allow for the extraction of

more parallelism than annotations.

1Note that the low-level variant of this algorithm is included in the

Stitching kernel.
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4.1. Annotations

Automatic parallelisation is a very difficult process, re-

quiring the temporal analysis of data dependencies

between variables to be successful. Source-code annota-

tions like in High Performance Fortran [17] have since

long been used to help the parallelising compiler by expli-

citly stating independent variables and data distributions.

More recently such annotations have been proposed for

task parallelism as well [18, 19]. Using annotations in-

stead of a parallel language such as DPCE [20] or CC++

[21] allows the use of any standard compiler for debug-

ging or back-porting purposes, and is thus preferable.

To demonstrate why we need actual application code, we

will use a simple example that finds the centre of gravity

of a certain colour range in an image. The original code

may look as follows:

(gx, gy) = Function SegmentGrav (image, bounds)

gx = gy = n = 0;

for (0 ≤ y < HEIGHT)

for (0 ≤ x < WIDTH)

if (InBounds(image[y][x], bounds))

gx = gx + x; gy = gy + y; n = n + 1;

gx = gx / n; gy = gy / n;

Original centre-of-gravity code for one image

By observing that InBounds is a pure function, and that

the loop iterations are thus independent except for the

counter variables gx, gy, and n, which are updated using a

commutative and associative operator (and thus comput-

able using a reduction tree), we can parallelise this loop

by adding some HPF-like annotations:

(gx, gy) = Function SegmentGrav (image, bounds)

#pragma DISTRIBUTE image(BLOCK,

BLOCK)

gx = gy = n = 0;

#pragma INDEPENDENT, NEW(x),

REDUCTION(gx, gy, n)

for (0 ≤ y < HEIGHT)

#pragma INDEPENDENT

for (0 ≤ x < WIDTH)

if (InBounds(image[y][x], bounds))

gx = gx + x; gy = gy + y; n = n + 1;

gx = gx / n; gy = gy / n;

Data parallel code, based on High Performance For-

tran. Note that the top loop is only independent if

a different x is chosen for each iteration, hence the

NEW(x).

Note, however, that executing InBounds and updating the

variables is not done concurrently, as splitting this depend-

ency can only be done by pipelining the operations across

a sequence of images, and this requires rewriting the code.

It is expected that this situation will occur frequently in ac-

tual applications, which are often optimised for sequential

processing. If not enough task parallelism is exploitable

through just the addition of annotations, one should con-

sider rewriting parts of the code using the library functions

proposed in the next section.

4.2. Image processing library

For writing new applications, and for revising unstruc-

tured legacy applications, using optimised library routines

is much more efficient than (re)writing your own

algorithms. An added benefit is that the resulting code

will have distinct functions with well-defined interfaces,

allowing for easy exploitation of task parallelism.

Soviany [22] proposes the use of algorithmic skeletons for

such library functions. These skeletons specify the struc-

ture of computation, while functions passed to the skel-

eton implement the computation itself. As an example,

a monadic point operation with one input image and one

output image has a structure in which each pixel is pro-

cessed independently, in any order. A colour segmenta-

tion algorithm would then specify only the segmentation

of one individual pixel, and pass this function to the skel-

eton. The mapper and scheduler can then use the prop-

erties of the structure of computation for the actual data

parallel execution.

Using skeletons, and task parallelism annotations based

on HPF 2.0 [19] for our segmentation and centre-of-

gravity example could yield the following code:

Subroutine Segment(in, bounds, out)

out = InBounds(in, bounds)

Subroutine Grav (in, x, y, {gx, gy, n})

if (in) gx = gx + x; gy = gy + y; n = n + 1;

(gx, gy) = Function SegmentGrav (image, bounds)

gx = gy = n = 0;

#pragma TASK REGION

#pragma ON(SET 1)

PointOp(image, segout, bounds, Segment)

gravin = segout

#pragma ON(SET 2) BEGIN

PointReductionOp(gravin, {gx, gy, n}, Grav)

gx = gx / n; gy = gy / n;

#pragma END ON

#pragma END TASK REGION

Data- and task parallelised code using skeletons. The

two skeletons can run independently, while the com-

munication (gravin = segout) must be executed by all

processors.
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While it is not possible to execute the tasks in parallel in

this specific example, with the given annotations it can be

extended to be used in a pipelined environment: if image

were an image source a while (1) within the

TASK REGION would do.

5. CONCLUSIONS

We have shown that representative benchmarks are ne-

cessary to define a suitable architectural template for im-

age processing, to test architecture analysis tools, and to

verify a parallelising compiler trajectory for our Smart-

Cam environment. We have argued that while deriving al-

gorithmic kernels from application domains simplifies the

analysis for purposes of architecture definition and tool-

ing, it is not sufficient for verifying the trajectory an ap-

plication developer follows using our parallelising com-

piler. For this purpose, we will use real-world implement-

ations of our chosen set of applications.
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Figure 2: A possible architecture template for a smart camera device, containing SIMD, ILP, and special-purpose pro-

cessors. All components, including the interconnection network, are subject to adjustment by the architecture exploration.
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