
BENCHMARKS FOR SMARTCAM DEVELOPMENT

Smart cameras
The continuing miniaturization of microchips makes 
it possible to integrate increasing amounts of 
processing power with sensing hardware to create 
intelligent sensors. A typical example of this integra-
tion, Smart Cameras are surveillance-camera sized 
devices with on-board image processing logic. This 
allows them to be used in stand-alone applications 
such as robotics, industrial inspection, and security 
systems. The added intelligence enables functions 
like positioning, fault detection and face recognition.

1,2W. Caarls, 2P.P. Jonker, and 3H. Corporaal
1wcaarls@ph.tn.tudelft.nl

2Department of Imaging Science and Technology, Delft University of Technology
3Department of Electrical Engineering, Eindhoven University of Technology

Quantified design

Skin-tone detection on a smart camera, part of a larger face recognition sys-
tem: original, skin-colored pixels, and final skin-tone regions. These regions 
are fed into a neural net classifier running on the same camera [1].

We want to quantify the design of smart cameras 

Representative kernels

Real-world applications

Image processing applications are usually divided 
into three stages: low-level, intermediate level, and 
high-level. Low-level algorithms transform images 
into other images using filters, geometric transfor-
mations, segmentation, etc. The intermediate level 
extracts objects and features from the transformed 
images, and the high level stage uses these fea-
tures to make decisions or present the information. 
Because each level has its own processing and com-
munication needs, we use representative kernels 
from all three to guide our algorithmic template.

The Inca+ Smart Camera by Philips CFT and Philips Research uses an SIMD 
processor for low-level filtering operations, and a VLIW processor for object 
processing.

Because real-world applications are rarely as well 
defined as a set of kernels, we are using actual ap-
plication code to verify the automatic instantiation 
of the template (using Design Space Exploration), 
and the mapping of the user program onto the vari-
ous processors in the instantiation. Because the au-
tomatic parallelization of legacy code – necessary if 
the application is to run on more than one proces-
sor – is an unsolved problem, we rely on compiler 
directives and code restructuring based on algorith-
mic skeletons to provide information about depend-
encies and  data distribution.

[1] H. Fatemi, R. Kleihorst, H. Corporaal, and P.P. Jonker, Real-Time Face Recognition on a Smart Camera, in: Proceedings of Acivs 2003 (Advanced Concepts for Intelli-
gent Vision Systems) (Ghent, Sept. 2-5), Ghent University, Ghent, 2003

����������

����������

����������������
������������������������������

����������������������
������������������

�������������������������������

���������������������

by creating a general smart camera architecture template consisting of a sensor and various types of proces-
sors, and by instantiating this template for specific applications. The former requires representative benchmarks 
to guide and test the design of the template, while for the latter we need real-world applications to verify the 
mapping of the application to and the instantiation of the template.

The three levels of image processing.


