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Why real-time reinforcement learning?

Use real system dynamics

@ No model
@ Low fidelity simulation
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Why real-time reinforcement learning?

Use real system dynamics
@ No model
@ Low fidelity simulation
Characteristics
@ Execute learned policy on real system
@ (short) Action selection deadlines
@ Update policy while executing

o Only soft deadlines, but learning is slow if policy
changes slowly

Both require fast computation.
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Outline

e Computation

e Parallel reinforcement learning

e Preliminary results

e Summary
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Computation Complexity

Outline

e Computation
@ Complexity
@ Moore’s law
@ The many-core era
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Complexity of reinforcement learning

@ Sample complexity

@ Computational complexity
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Complexity of reinforcement learning

@ Sample complexity
e Time

@ Real time
@ Expensive simulation

e Damage, hard to set initial condition, etc.
@ Computational complexity

o (batch) Updates
e Model (construction, readout)
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Computation Complexity

Moore’s law
The many-core era

Complexity of reinforcement learning

@ Sample complexity
e Time

@ Real time
@ Expensive simulation

e Damage, hard to set initial condition, etc.
@ Computational complexity

o (batch) Updates
e Model (construction, readout)

Samples are scarce, but computation is abundant. Data-efficient
algorithms trade off sample complexity for computational complexity.
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Computation Complexity

Moore's law
The many-core era

Moore’s law
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Moore’s law
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Computation Complexity

Moore's law
The many-core era

Abundance of computation

Moore’s law no longer speeds up sequential processes. In order to
take advantage of the abundance of computation, algorithms must be
parallel. Massively parallel.
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Computation Complexity

Moore’s law
The many-core era

Many-core architectures

@ Computation

e Hundreds to thousands of processors
o Individually less capable
e Partial SIMD
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Many-core architectures

@ Computation
e Hundreds to thousands of processors
o Individually less capable
e Partial SIMD

@ Data access

e Not significantly more memory than single processors
o Distributed
@ Non-local access has high latency
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Computation Complexity

Moore’s law
The many-core era

Many-core architectures

@ Computation
e Hundreds to thousands of processors
o Individually less capable
e Partial SIMD

@ Data access

e Not significantly more memory than single processors
o Distributed
@ Non-local access has high latency

@ Sequential operation count is a poor predictor for performance
o O(n?) may be faster at n = 1000 than O(n)
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Parallel reinforcement learning

Outline

e Parallel reinforcement learning
@ Environment
@ Updates
@ Model parallelism
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Environment
Upd

Parallel reinforcement learning

Parallelism in the environment

@ Multiple systems
o Evolutionary robotics
e Single value function
@ Multiple value functions with
exchange

Figure: Kohl and Stone, 2004.
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Parallel reinforcement learning

Parallelism in the environment

@ Multiple systems
o Evolutionary robotics
e Single value function
@ Multiple value functions with
exchange
@ Concurrent simulation
e Integrate heterogeneous
updates
@ Parallel simulation
o GPU physics acceleration Figure: Kohl and Stone, 2004.
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Parallel reinforcement learning

Parallel updates

@ Single value function

e Domain decomposition

o Needs multiple update sources
@ Experience replay
@ Multiple systems
@ Model
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Environment
Updates
Model parallelism

Parallel reinforcement learning

Parallel updates

@ Single value function

e Domain decomposition
o Needs multiple update sources

@ Experience replay
@ Multiple systems
@ Model

@ Multiple value functions
o Learn different things
@ Batch

o Parallel backpropagation
o Parallel LSPI
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Updates
Model parallelism

Parallel reinforcement learning

Parallel model readout

Depending on the model, construction or readout can be parallel.
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Parallel model readout
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Locally linear regression
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Environment
Updates
Model parallelism

Parallel reinforcement learning

Parallel model readout

Depending on the model, construction or readout can be parallel.

Locally linear regression
@ Find k nearest neighbors s
@ Fit linear least-squares model . -

Both can be efficiently parallelized
on GPUs.
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Environment
Updates
Model parallelism

Parallel reinforcement learning

Global scheme

— ™ Robot Sim <*+—

Policy | Model ~————{ |  Policy
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Model learning
Preliminary results Value function decomposition

Outline

e Preliminary results
@ Model learning
@ Value function decomposition
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Model learning
Preliminary results Value function decomposition

Model learning

@ Learn a model from interactions with the real world
@ Use computational abundance to perform many model updates

e Random
e Prioritized sweeping
e Sequential (imitate real trials)
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Model learning
Preliminary results Value function decomposition

Model learning

@ Learn a model from interactions with the real world
@ Use computational abundance to perform many model updates

e Random
e Prioritized sweeping
e Sequential (imitate real trials)

@ Direct updates become insignificant
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Model learning
Preliminary results Value function decomposition

Two-link manipulator

Reward & termination when ¢; = ¢ = ¢y = ¢ = 0
Constant time penalty

4 state dimensions, 2 action dimensions, tile coding
5 discretized actions per dimension

SARSA
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Model learning
Preliminary results Value function decomposition

Random dyna, n=10000
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Model learning
Preliminary results Value function decomposition

Sequential dyna, n=10000

Sequential Dyna, performance against trials
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Model learning
Preliminary results Value function decomposition

Pendulum swing-up

Value function
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Model learning
Preliminary results Value function decomposition
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Model learning
Preliminary results Value function decomposition

Real-world performance
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Model learning
Preliminary results Value function decomposition

Starting state distribution

Test run coverage Actual starting distribution
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Model learning
Preliminary results Value function decomposition

Testrun-guided starting states

4000 -

2000 -

S RaR NN

-2000

-4000

Test run performance

-6000

-8000
procs=1
procs=4
-10000 |- procs=16
procs=64
12000 : ‘ . y : 5 ; :
1 2 3 4 5 6 7 8
Compute time (updates) X 105

23/25

Wouter Caarls



Summary

Outline

e Summary
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Summary

Summary

@ Moore’s Law won'’t speed up our algorithms anymore unless they
are parallel. Parallelism can be employed at many levels, but
must do effective work. Conventional computational complexity is
losing validity.

@ Outlook

e Find parallelism in current algorithms.
e Design new algorithms with parallelism in mind.
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