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Why real-time reinforcement learning?

Use real system dynamics

No model
Low fidelity simulation

Characteristics
Execute learned policy on real system

(short) Action selection deadlines

Update policy while executing
Only soft deadlines, but learning is slow if policy
changes slowly

Both require fast computation.
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Complexity of reinforcement learning

Sample complexity
Time

Real time
Expensive simulation

Damage, hard to set initial condition, etc.

Computational complexity
(batch) Updates
Model (construction, readout)

Samples are scarce, but computation is abundant. Data-efficient
algorithms trade off sample complexity for computational complexity.
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Moore’s law
The many-core era

Abundance of computation

Moore’s law no longer speeds up sequential processes. In order to
take advantage of the abundance of computation, algorithms must be
parallel. Massively parallel.
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Many-core architectures

Computation
Hundreds to thousands of processors
Individually less capable
Partial SIMD

Data access
Not significantly more memory than single processors
Distributed
Non-local access has high latency

Sequential operation count is a poor predictor for performance
O(n2) may be faster at n = 1000 than O(n)
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Environment
Updates
Model parallelism

Parallelism in the environment

Multiple systems
Evolutionary robotics
Single value function
Multiple value functions with
exchange

Concurrent simulation
Integrate heterogeneous
updates

Parallel simulation
GPU physics acceleration Figure: Kohl and Stone, 2004.
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Parallel updates

Single value function
Domain decomposition
Needs multiple update sources

Experience replay
Multiple systems
Model

Multiple value functions
Learn different things

Batch
Parallel backpropagation
Parallel LSPI
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Environment
Updates
Model parallelism

Parallel model readout

Depending on the model, construction or readout can be parallel.

Locally linear regression

Find k nearest neighbors

Fit linear least-squares model

Both can be efficiently parallelized
on GPUs.
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Environment
Updates
Model parallelism

Global scheme

Model

Robot

Policy

Sim

Policy

31

2

V b
1

V d
1

V2

V a
1

V c
1
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Model learning
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Model learning

Learn a model from interactions with the real world
Use computational abundance to perform many model updates

Random
Prioritized sweeping
Sequential (imitate real trials)

Direct updates become insignificant
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Model learning
Value function decomposition

Two-link manipulator

m1

m2

l2

l1

motor1

motor2

1

2

φ

φ

Reward & termination when φ1 = φ2 = φ̇1 = φ̇2 = 0

Constant time penalty

4 state dimensions, 2 action dimensions, tile coding

5 discretized actions per dimension

SARSA
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Random dyna, n=10000
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Model learning
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Sequential dyna, n=10000
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Pendulum swing-up

z

yx

r

2r

l

with torque motor
hinge axis

initial
condition

rotation
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Model learning
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Performance
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Model learning
Value function decomposition

Real-world performance
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Model learning
Value function decomposition

Starting state distribution
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Model learning
Value function decomposition

Testrun-guided starting states
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Summary

Moore’s Law won’t speed up our algorithms anymore unless they
are parallel. Parallelism can be employed at many levels, but
must do effective work. Conventional computational complexity is
losing validity.

Outlook
Find parallelism in current algorithms.
Design new algorithms with parallelism in mind.
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