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Reinforcement learning for robots

Sample complexity of traditional RL
algorithms is too high

I Robots break
I Too slow

Computational complexity of
sample-efficient algorithms is too high

I System is idle while computing
I Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]
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Why parallel reinforcement learning?

Sequential CPU speed is not
increasing to compensate for
increased computational
complexity

I Moore’s Law is about # of
transistors, not clock
frequency

I More transistors can only do
so much for single-threaded
applications

I Multi-core is the primary
vectory of speed increase

Parallelism is the way to reduce computation time
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Traditional parallel RL

State-space decomposition
I Split up state space
I Each processor learns in one

subdomain
I Value exchange across borders

Multiple learners
I Many agents learning the same task
I Shared or replicated value function
I Periodic or prioritized value exchange
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Problems

Requires multiple systems
I Robots

May differ between each other
I Simulations/models

Differ from real system

Limited by control frequency
I Typically 20-100 Hz on real systems
I Not a problem with simulations

[Kohl & Stone, 2004]
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Other approaches

Model learning
I Multiple agents reading out single model
I Model readout is faster than control frequency

Experience replay

Parallelization of function approximator
I ANN
I LSTD-Q

Learning multiple tasks
I Horde architecture
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DYNA architecture

[Sutton & Barto, 1998]
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Options

Model approximator
I Grid of state transition probabilities
I Grid of feature transition probabilities
I ANN, LWR, GP, etc.

Value approximator
I Tile coding
I Basis functions
I ANN, LWR, etc.

Choice of model updates
I Random
I Trajectories (from current state)
I Prioritized sweeping

Updates per control step (K )
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Locally weighted regression

Find k nearest neighbors
I Approximate nearest neighbor

search

Weigh according to distance

w(p) = e
−
(
|p−q|2

h

)2

where h is the distance to the
kth nearest neighbor

Fit linear model using
least-squares regression
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Computational efficiency
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Inverted pendulum
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Parallel DYNA
Parallel DYNA (α=0.02,λ=0)
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Two-link manipulator

m1

m2

l2

l1

motor1

motor2

1

2

φ

φ

Reward −5φ21 − 0.05φ̇21 − 5φ22 − 0.05φ̇22
4 state dimensions, 2 action dimensions, tile coding

3 discretized actions per dimension
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Real-world pendulum

DCSC DC Motor Setup
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Real-world pendulum
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Real-world pick and place

2 Dynamixel RX-28 servos

Move from pick to place
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Real-world pick and place
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Movie
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Summary

RL on robots requires reduced sample complexity without
increasing computation time.

Moore’s Law won’t speed up our algorithms anymore
unless they are parallel.

Traditional parallel reinforcement learning won’t work on
robots, because we have only one system and it is limited
by the control frequency.

Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.
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Experimental data

Task Setting Rise time (s) Perf Speedup

Pendulum (sim) SARSA(λ) 650 -848
PDYNA 9.1 -935 72x
PDYNA1 12.6 -812 52x

Pendulum (real) SARSA(λ) 561 -1027
PDYNA -1153
PDYNA1 28.1 -932 20x

Manipulator (sim) SARSA(λ) 4521 -76
PDYNA 41.8 -81 108x

Manipulator (real) SARSA(λ) 417 -55
PDYNA1 73.9 -57 6x
PDYNA12 6.9 -45 60x

1Decreased learning rate, no eligibility traces 2Using reference model for

rewards
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