
Parallel DYNA
Real-time model learning RL

Wouter Caarls, Delft University of Technology
May 2nd, 2013

() Parallel DYNA 1 / 25

Reinforcement learning for robots

Sample complexity of traditional RL
algorithms is too high

I Robots break
I Too slow

Computational complexity of
sample-efficient algorithms is too high

I System is idle while computing
I Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

() Parallel DYNA 2 / 25

Reinforcement learning for robots

Sample complexity of traditional RL
algorithms is too high

I Robots break
I Too slow

Computational complexity of
sample-efficient algorithms is too high

I System is idle while computing
I Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

() Parallel DYNA 2 / 25

Reinforcement learning for robots

Sample complexity of traditional RL
algorithms is too high

I Robots break
I Too slow

Computational complexity of
sample-efficient algorithms is too high

I System is idle while computing
I Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

() Parallel DYNA 2 / 25

Why parallel reinforcement learning?

Sequential CPU speed is not
increasing to compensate for
increased computational
complexity

I Moore’s Law is about # of
transistors, not clock
frequency

I More transistors can only do
so much for single-threaded
applications

I Multi-core is the primary
vectory of speed increase

Parallelism is the way to reduce computation time

() Parallel DYNA 3 / 25

Why parallel reinforcement learning?

Sequential CPU speed is not
increasing to compensate for
increased computational
complexity

I Moore’s Law is about # of
transistors, not clock
frequency

I More transistors can only do
so much for single-threaded
applications

I Multi-core is the primary
vectory of speed increase

Parallelism is the way to reduce computation time

() Parallel DYNA 3 / 25

Outline

1 Parallel reinforcement learning
Traditional approach
Other approaches

2 Parallel real-time model learning RL
DYNA architecture
Parallel DYNA

3 Experiments
Computational efficiency
Simulated systems
Real systems

4 Summary

() Parallel DYNA 4 / 25

Outline

1 Parallel reinforcement learning
Traditional approach
Other approaches

2 Parallel real-time model learning RL
DYNA architecture
Parallel DYNA

3 Experiments
Computational efficiency
Simulated systems
Real systems

4 Summary

() Parallel DYNA 5 / 25

Traditional parallel RL

State-space decomposition
I Split up state space
I Each processor learns in one

subdomain
I Value exchange across borders

Multiple learners
I Many agents learning the same task
I Shared or replicated value function
I Periodic or prioritized value exchange

() Parallel DYNA 6 / 25

Traditional parallel RL

State-space decomposition
I Split up state space
I Each processor learns in one

subdomain
I Value exchange across borders

Multiple learners
I Many agents learning the same task
I Shared or replicated value function
I Periodic or prioritized value exchange

() Parallel DYNA 6 / 25

Problems

Requires multiple systems
I Robots

May differ between each other
I Simulations/models

Differ from real system

Limited by control frequency
I Typically 20-100 Hz on real systems
I Not a problem with simulations

[Kohl & Stone, 2004]

() Parallel DYNA 7 / 25

Problems

Requires multiple systems
I Robots

May differ between each other
I Simulations/models

Differ from real system

Limited by control frequency
I Typically 20-100 Hz on real systems
I Not a problem with simulations

[Kohl & Stone, 2004]

() Parallel DYNA 7 / 25

Other approaches

Model learning
I Multiple agents reading out single model
I Model readout is faster than control frequency

Experience replay

Parallelization of function approximator
I ANN
I LSTD-Q

Learning multiple tasks
I Horde architecture

() Parallel DYNA 8 / 25

Other approaches

Model learning
I Multiple agents reading out single model
I Model readout is faster than control frequency

Experience replay

Parallelization of function approximator
I ANN
I LSTD-Q

Learning multiple tasks
I Horde architecture

() Parallel DYNA 8 / 25

Other approaches

Model learning
I Multiple agents reading out single model
I Model readout is faster than control frequency

Experience replay

Parallelization of function approximator
I ANN
I LSTD-Q

Learning multiple tasks
I Horde architecture

() Parallel DYNA 8 / 25

Other approaches

Model learning
I Multiple agents reading out single model
I Model readout is faster than control frequency

Experience replay

Parallelization of function approximator
I ANN
I LSTD-Q

Learning multiple tasks
I Horde architecture

() Parallel DYNA 8 / 25

Other approaches

Model learning
I Multiple agents reading out single model
I Model readout is faster than control frequency

Experience replay

Parallelization of function approximator
I ANN
I LSTD-Q

Learning multiple tasks
I Horde architecture

() Parallel DYNA 8 / 25

Outline

1 Parallel reinforcement learning
Traditional approach
Other approaches

2 Parallel real-time model learning RL
DYNA architecture
Parallel DYNA

3 Experiments
Computational efficiency
Simulated systems
Real systems

4 Summary

() Parallel DYNA 9 / 25

DYNA architecture

[Sutton & Barto, 1998]

() Parallel DYNA 10 / 25

Options

Model approximator
I Grid of state transition probabilities
I Grid of feature transition probabilities
I ANN, LWR, GP, etc.

Value approximator
I Tile coding
I Basis functions
I ANN, LWR, etc.

Choice of model updates
I Random
I Trajectories (from current state)
I Prioritized sweeping

Updates per control step (K)

() Parallel DYNA 11 / 25

Options

Model approximator
I Grid of state transition probabilities
I Grid of feature transition probabilities
I ANN, LWR, GP, etc.

Value approximator
I Tile coding
I Basis functions
I ANN, LWR, etc.

Choice of model updates
I Random
I Trajectories (from current state)
I Prioritized sweeping

Updates per control step (K)

() Parallel DYNA 11 / 25

Options

Model approximator
I Grid of state transition probabilities
I Grid of feature transition probabilities
I ANN, LWR, GP, etc.

Value approximator
I Tile coding
I Basis functions
I ANN, LWR, etc.

Choice of model updates
I Random
I Trajectories (from current state)
I Prioritized sweeping

Updates per control step (K)

() Parallel DYNA 11 / 25

Options

Model approximator
I Grid of state transition probabilities
I Grid of feature transition probabilities
I ANN, LWR, GP, etc.

Value approximator
I Tile coding
I Basis functions
I ANN, LWR, etc.

Choice of model updates
I Random
I Trajectories (from current state)
I Prioritized sweeping

Updates per control step (K)

() Parallel DYNA 11 / 25

Options

Model approximator
I Grid of state transition probabilities
I Grid of feature transition probabilities
I ANN, LWR, GP, etc.

Value approximator
I Tile coding
I Basis functions
I ANN, LWR, etc.

Choice of model updates
I Random
I Trajectories (from current state)
I Prioritized sweeping

Updates per control step (K)

() Parallel DYNA 11 / 25

Locally weighted regression

Find k nearest neighbors
I Approximate nearest neighbor

search

Weigh according to distance

w(p) = e
−
(
|p−q|2

h

)2

where h is the distance to the
kth nearest neighbor

Fit linear model using
least-squares regression

() Parallel DYNA 12 / 25

Parallel DYNA

System

Value function

Policy thread

Model

Transition queue

a

s, r

s, a→ s′, r

s, a, q

qs, a

q

s, a

Planning thread

z−1

s

a

a

s, a s′, rs

Model thread

kd-tree

() Parallel DYNA 13 / 25

Parallel DYNA

System

Value function

Policy thread

Model

Transition queue

a

s, r

s, a→ s′, r

s, a, q

qs, a

q

s, a

Planning thread

z−1

s

a

a

s, a s′, rs

Model thread

kd-tree

() Parallel DYNA 13 / 25

Parallel DYNA

System

Value function

Policy thread

Model

Transition queue

a

s, r

s, a→ s′, r

s, a, q

qs, a

q

s, a

Planning thread

z−1

s

a

a

s, a s′, rs

Model thread

kd-tree

() Parallel DYNA 13 / 25

Parallel DYNA

System

Value function

Policy thread

Model

Transition queue

a

s, r

s, a→ s′, r

s, a, q

qs, a

q

s, a

Planning thread

z−1

s

a

a

s, a s′, rs

Model thread

kd-tree

() Parallel DYNA 13 / 25

Outline

1 Parallel reinforcement learning
Traditional approach
Other approaches

2 Parallel real-time model learning RL
DYNA architecture
Parallel DYNA

3 Experiments
Computational efficiency
Simulated systems
Real systems

4 Summary

() Parallel DYNA 14 / 25

Computational efficiency

U
pd

at
es

 p
er

 s
ec

on
d

0

1

2

3

4

5

6

× 10
5

Number of parallel threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
linear
actual

() Parallel DYNA 15 / 25

Inverted pendulum

Time (s)

C
um

ul
at

iv
e

re
w

ar
d

20 22 24 26 28 210 212
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

x 103

SARSA(λ)
Parallel DYNA
Parallel DYNA (α=0.02,λ=0)

() Parallel DYNA 16 / 25

Two-link manipulator

m1

m2

l2

l1

motor1

motor2

1

2

φ

φ

Reward −5φ21 − 0.05φ̇21 − 5φ22 − 0.05φ̇22
4 state dimensions, 2 action dimensions, tile coding

3 discretized actions per dimension

() Parallel DYNA 17 / 25

Two-link manipulator

Time (s)

C
um

ul
at

iv
e

re
w

ar
d

20 22 24 26 28 210 212 214
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

SARSA(λ)
Parallel DYNA

() Parallel DYNA 18 / 25

Real-world pendulum

DCSC DC Motor Setup

() Parallel DYNA 19 / 25

Real-world pendulum

Time (s)

C
um

ul
at

iv
e

re
w

ar
d

20 22 24 26 28 210 212
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

x 103

SARSA(λ)
Parallel DYNA
Parallel DYNA (α=0.02,λ=0)

() Parallel DYNA 20 / 25

Real-world pick and place

2 Dynamixel RX-28 servos

Move from pick to place

() Parallel DYNA 21 / 25

Real-world pick and place

Time (s)

C
um

ul
at

iv
e

re
w

ar
d

20 22 24 26 28 210
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

SARSA(λ)
Parallel DYNA (small stepsize)
Parallel DYNA (α=0.04,λ=0, reference rewards)

() Parallel DYNA 22 / 25

Movie

() Parallel DYNA 23 / 25

Outline

1 Parallel reinforcement learning
Traditional approach
Other approaches

2 Parallel real-time model learning RL
DYNA architecture
Parallel DYNA

3 Experiments
Computational efficiency
Simulated systems
Real systems

4 Summary

() Parallel DYNA 24 / 25

Summary

RL on robots requires reduced sample complexity without
increasing computation time.

Moore’s Law won’t speed up our algorithms anymore
unless they are parallel.

Traditional parallel reinforcement learning won’t work on
robots, because we have only one system and it is limited
by the control frequency.

Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.

() Parallel DYNA 25 / 25

Summary

RL on robots requires reduced sample complexity without
increasing computation time.

Moore’s Law won’t speed up our algorithms anymore
unless they are parallel.

Traditional parallel reinforcement learning won’t work on
robots, because we have only one system and it is limited
by the control frequency.

Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.

() Parallel DYNA 25 / 25

Summary

RL on robots requires reduced sample complexity without
increasing computation time.

Moore’s Law won’t speed up our algorithms anymore
unless they are parallel.

Traditional parallel reinforcement learning won’t work on
robots, because we have only one system and it is limited
by the control frequency.

Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.

() Parallel DYNA 25 / 25

Summary

RL on robots requires reduced sample complexity without
increasing computation time.

Moore’s Law won’t speed up our algorithms anymore
unless they are parallel.

Traditional parallel reinforcement learning won’t work on
robots, because we have only one system and it is limited
by the control frequency.

Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.

() Parallel DYNA 25 / 25

Summary

RL on robots requires reduced sample complexity without
increasing computation time.

Moore’s Law won’t speed up our algorithms anymore
unless they are parallel.

Traditional parallel reinforcement learning won’t work on
robots, because we have only one system and it is limited
by the control frequency.

Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.

() Parallel DYNA 25 / 25

Experimental data

Task Setting Rise time (s) Perf Speedup

Pendulum (sim) SARSA(λ) 650 -848
PDYNA 9.1 -935 72x
PDYNA1 12.6 -812 52x

Pendulum (real) SARSA(λ) 561 -1027
PDYNA -1153
PDYNA1 28.1 -932 20x

Manipulator (sim) SARSA(λ) 4521 -76
PDYNA 41.8 -81 108x

Manipulator (real) SARSA(λ) 417 -55
PDYNA1 73.9 -57 6x
PDYNA12 6.9 -45 60x

1Decreased learning rate, no eligibility traces 2Using reference model for

rewards

() Parallel DYNA 1 / 2

	Parallel reinforcement learning
	Traditional approach
	Other approaches

	Parallel real-time model learning RL
	DYNA architecture
	Parallel DYNA

	Experiments
	Computational efficiency
	Simulated systems
	Real systems

	Summary
	B"ylage

