Parallel DYNA

Real-time model learning RL

Wouter Caarls, Delft University of Technology
May 2nd, 2013

NS

Reinforcement learning for robots

@ Sample complexity of traditional RL
algorithms is too high
» Robots break
» Too slow

[Schuitema et al., 2010]

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA 2/25

Reinforcement learning for robots

@ Sample complexity of traditional RL
algorithms is too high
» Robots break
» Too slow
o Computational complexity of
sample-efficient algorithms is too high
» System is idle while computing
» Controlled by outdated control policy

[Schuitema et al., 2010]

3
TUDelft

Reinforcement learning for robots

@ Sample complexity of traditional RL
algorithms is too high
» Robots break
» Too slow
o Computational complexity of
sample-efficient algorithms is too high
» System is idle while computing
» Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

3
TUDelft

Why parallel reinforcement learning?

@ Sequential CPU speed is not
increasing to compensate for
increased computational
complexity

» Moore's Law is about # of
transistors, not clock
frequency

More transistors can only do

so much for single-threaded

applications

Multi-core is the primary

vectory of speed increase

=)

=)

Theoretical maximum operations per second

3
TUDelft

Parallel DYNA 3/25

Computing speed evolution

GTX580

NVIDIAGPUS L.y

8800GTX*"

Intel multi-core CPW

Pentium D 840 e
Pentiuma-2400- i

“Single-core
Performance|

Intel single-core CPUs
* <3 Pentium MMX-233

1990 1995 2000

Year of introduction

2005 2010

Why parallel reinforcement learning?

Computing speed evolution

@ Sequential CPU speed is not
increasing to compensate for
increased computational
complexity

» Moore's Law is about # of
transistors, not clock
frequency

» More transistors can only do
so much for single-threaded
applications

» Multi-core is the primary
vectory of speed increase

GTX580
NVIDIAGPUs .75
8800GTX*"

Intel multi-core CPW
Pentium D 840 e

Pentiuma-2400- i

=)

=)

" Single-core
Performance|

Intel single-core CPUs
* <3 Pentium MMX-233

Theoretical maximum operations per second

1990 1995 2000 2005 2010
Year of introduction

Parallelism is the way to reduce computation time

3
TUDelft

Parallel DYNA 3/25

Outline

@ Parallel reinforcement learning

© Parallel real-time model learning RL

© Experiments

Q@ Summary

3
TUDelft

«O» «Fr o«

Parallel DYNA 4 /25

it
v
a
il
v
e
i

Outline

@ Parallel reinforcement learning
@ Traditional approach
@ Other approaches

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA

Traditional parallel RL

Value function

@ State-space decomposition
» Split up state space
» Each processor learns in one
subdomain
» Value exchange across borders

3
TUDelft

Parallel DYNA 6 /25

Traditional parallel RL

@ State-space decomposition
» Split up state space
» Each processor learns in one
subdomain
» Value exchange across borders

o Multiple learners
» Many agents learning the same task
» Shared or replicated value function
» Periodic or prioritized value exchange

3
TUDelft

Value function

40

Ty

30

20

.......

30

Problems

@ Requires multiple systems
> Robots
May differ between each other
» Simulations/models
Differ from real system

[Kohl & Stone, 2004]

3
TUDelft

Parallel DYNA 7/25

Problems

@ Requires multiple systems
> Robots
May differ between each other
» Simulations/models
Differ from real system

@ Limited by control frequency

» Typically 20-100 Hz on real systems
» Not a problem with simulations

[Kohl & Stone, 2004]

3
TUDelft

Other approaches

@ Model learning

» Multiple agents reading out single model
» Model readout is faster than control frequency

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA

Other approaches

@ Model learning

» Multiple agents reading out single model
» Model readout is faster than control frequency

@ Experience replay

3
TUDelft

«O> «F> «E» «E» E|= [

Parallel DYNA 8/25

Other approaches

@ Model learning

» Multiple agents reading out single model

» Model readout is faster than control frequency
@ Experience replay
o Parallelization of function approximator

» ANN
» LSTD-Q

3
TUDelft

Other approaches

@ Model learning
» Multiple agents reading out single model
» Model readout is faster than control frequency
@ Experience replay
o Parallelization of function approximator
» ANN
» LSTD-Q
@ Learning multiple tasks
» Horde architecture

3
TUDelft

Other approaches

@ Model learning

» Multiple agents reading out single model

» Model readout is faster than control frequency
@ Experience replay
o Parallelization of function approximator

» ANN
» LSTD-Q

@ Learning multiple tasks
» Horde architecture

3
TUDelft

Outline

© Parallel real-time model learning RL
@ DYNA architecture
@ Parallel DYNA

3
TUDelft

40> «Fr» «E» «E» E|= HQO

Parallel DYNA 9/25

DYNA architecture

value/policy
acting

planning direct
RL

model experience

>~

model
learning

[Sutton & Barto, 1998]

3
TUDelft

Parallel DYNA

Options

@ Model approximator

» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA 11 /25

Options

o Model approximator

» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.

o Value approximator

» Tile coding
» Basis functions
» ANN, LWR, etc.

3
TUDelft

Options

o Model approximator

» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.

o Value approximator

» Tile coding
» Basis functions
» ANN, LWR, etc.

@ Choice of model updates

» Random
» Trajectories (from current state)
> Prioritized sweeping

3
TUDelft

Options

o Model approximator
» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.
o Value approximator
» Tile coding
» Basis functions
» ANN, LWR, etc.
@ Choice of model updates
» Random
» Trajectories (from current state)
> Prioritized sweeping

e Updates per control step (K)

3
TUDelft

Options

o Model approximator
» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.
o Value approximator
» Tile coding
» Basis functions
» ANN, LWR, etc.
@ Choice of model updates
» Random
» Trajectories (from current state)
> Prioritized sweeping

e Updates per control step (K)

3
TUDelft

Locally weighted regression

@ Find k nearest neighbors

» Approximate nearest neighbor
search

@ Weigh according to distance

wip) = e ()

where h is the distance to the i
kth nearest neighbor

o Fit linear model using
least-squares regression

3
TUDelft

A4O0>» «Fr «E» «» E=|
Parallel DYNA 12 /25

Q>

Parallel DYNA

’
a s,a—s,r

s Transition queue Model thread

kd-tree

System Model

Policy thread

s,a q
s,a
-
. q .
Value function Planning thread
s,a,q

3
TUDelft

Parallel DYNA 13 /25

Parallel DYNA

’
a s,a—s,r

s Transition queue Model thread

kd-tree

System Model

Policy thread

s,a q
s,a
-
. q .
Value function Planning thread
s,a,q

3
TUDelft

Parallel DYNA 13 /25

Parallel DYNA

’
a s,a—s,r

s Transition queue Model thread

kd-tree

System Model

Policy thread

s,a q
s,a
-
. q .
Value function Planning thread
s,a,q

3
TUDelft

Parallel DYNA 13 /25

Parallel DYNA

’
a s,a—s,r

s Transition queue Model thread

kd-tree

System Model

Policy thread

s,a q
s,a
-
. q .
Value function Planning thread
s,a,q

3
TUDelft

Parallel DYNA 13 /25

Outline

© Experiments
@ Computational efficiency
o Simulated systems
@ Real systems

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA 14 / 25

Computational efficiency

16
6
4 14
5t 112
el
S4 t 1 10
o
s
3 18 0@
23 | 2
% 7]
§ 16
2»
14
1»
12
0 P S

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of parallel threads

3
TUDelft

Parallel DYNA

Inverted pendulum

x10°
ApFF-=-=-=--)
[
' .
45 f 1
1
2+ 15
I
T (i
S 25+t I:
2 I
g I:
E B
E :
3 -35+t 'H
I:
'3
4 + 1
L
45 || = SARSA()
= = = Parallel DYNA
-------- Parallel DYNA (0=0.02,A=0) .)
® 20 2? 2 2° 2 2" 2"
Time (s)

3
TUDelft

Parallel DYNA 16 / 25

Two-link manipulator

o Reward —5¢% — 0.05¢3 — 5¢3 — 0.05¢3
@ 4 state dimensions, 2 action dimensions, tile coding

@ 3 discretized actions per dimension

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA

Two-link manipulator

400 - — - — = — = — =
I
150 +

-200

Cumulative reward
)
a
o
T

— SARSA()\)
= = = Parallel DYNA

3
TUDelft

Parallel DYNA 18 / 25

Real-world pendulum

3
TUDelft

Parallel DYNA

Real-world pendulum

x10°
-1
-15
_2 L
B
.25+
o
2
g 97
>
£
=1
O -35
4 +
45 t SARSA(M)
= = = Parallel DYNA
""""" Parallel DYNA (0=0.02,A=0)
N T T T | |)
520 22 ot 26 o8 210 012

3
TUDelft

Parallel DYNA 20 / 25

Real-world pick and place

@ 2 Dynamixel RX-28 servos

@ Move from pick to place

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA

Real-world pick and place

-100

-150 -

-200

-250

-300

Cumulative reward

-350 -

-400

— SARSA())
= = = Parallel DYNA (small stepsize)

""""" Parallel DYNA (0=0.04,A=0, reference rewards)
20 22 24 26 28 210
Time (s)

-450 |-

-500

3
TUDelft

Parallel DYNA 22 /25

Movie

3
TUDelft

Parallel DYNA

Outline

Q@ Summary

3
TUDelft

«O» <> «ZE» «ZE» E|l= HACQ

Parallel DYNA 24 / 25

Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.

3
TUDelft

Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.

@ Moore's Law won't speed up our algorithms anymore
unless they are parallel.

3
TUDelft

Parallel DYNA 25 /25

Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.

@ Moore's Law won't speed up our algorithms anymore
unless they are parallel.
@ Traditional parallel reinforcement learning won't work on

robots, because we have only one system and it is limited
by the control frequency.

3
TUDelft

Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.

@ Moore's Law won't speed up our algorithms anymore
unless they are parallel.
@ Traditional parallel reinforcement learning won't work on

robots, because we have only one system and it is limited
by the control frequency.

e Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

3
TUDelft

Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.

@ Moore's Law won't speed up our algorithms anymore
unless they are parallel.

@ Traditional parallel reinforcement learning won't work on
robots, because we have only one system and it is limited
by the control frequency.

e Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.

3
TUDelft

Experimental data

Task Setting Rise time (s) Perf Speedup
Pendulum (sim) SARSA()) 650 -848

PDYNA 9.1 -935 72x

PDYNA! 12.6 -812 52x
Pendulum (real) SARSA()) 561 -1027

PDYNA -1153

PDYNA! 28.1 -932 20x
Manipulator (sim) SARSA(M) 4521 -76

PDYNA 41.8 -81 108x
Manipulator (real) SARSA(\) 417 -55

PDYNA! 739 57 6x

PDYNA!? 6.9 -45 60x

1Decreased learning rate, no eligibility traces 2Using reference model for

rewards

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA 1/2

«EZ»

Q>

	Parallel reinforcement learning
	Traditional approach
	Other approaches

	Parallel real-time model learning RL
	DYNA architecture
	Parallel DYNA

	Experiments
	Computational efficiency
	Simulated systems
	Real systems

	Summary
	B"ylage

