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Reinforcement learning for robots

@ Sample complexity of traditional RL
algorithms is too high
» Robots break
» Too slow

[Schuitema et al., 2010]
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Reinforcement learning for robots

@ Sample complexity of traditional RL
algorithms is too high
» Robots break
» Too slow
o Computational complexity of
sample-efficient algorithms is too high
» System is idle while computing
» Controlled by outdated control policy
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Reinforcement learning for robots

@ Sample complexity of traditional RL
algorithms is too high
» Robots break
» Too slow
o Computational complexity of
sample-efficient algorithms is too high
» System is idle while computing
» Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]
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Why parallel reinforcement learning?

@ Sequential CPU speed is not
increasing to compensate for
increased computational
complexity

» Moore's Law is about # of
transistors, not clock
frequency

More transistors can only do

so much for single-threaded

applications

Multi-core is the primary

vectory of speed increase

=)

=)

Theoretical maximum operations per second
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Parallelism is the way to reduce computation time
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Outline

@ Parallel reinforcement learning

© Parallel real-time model learning RL

© Experiments

Q@ Summary
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Outline

@ Parallel reinforcement learning
@ Traditional approach
@ Other approaches
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Traditional parallel RL

Value function

@ State-space decomposition
» Split up state space
» Each processor learns in one
subdomain
» Value exchange across borders
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Traditional parallel RL

@ State-space decomposition
» Split up state space
» Each processor learns in one
subdomain
» Value exchange across borders

o Multiple learners
» Many agents learning the same task
» Shared or replicated value function
» Periodic or prioritized value exchange
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Problems

@ Requires multiple systems
> Robots
May differ between each other
» Simulations/models
Differ from real system

[Kohl & Stone, 2004]
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Problems

@ Requires multiple systems
> Robots
May differ between each other
» Simulations/models
Differ from real system

@ Limited by control frequency

» Typically 20-100 Hz on real systems
» Not a problem with simulations

[Kohl & Stone, 2004]
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Other approaches

@ Model learning

» Multiple agents reading out single model
» Model readout is faster than control frequency
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Other approaches

@ Model learning

» Multiple agents reading out single model
» Model readout is faster than control frequency

@ Experience replay
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Other approaches

@ Model learning

» Multiple agents reading out single model

» Model readout is faster than control frequency
@ Experience replay
o Parallelization of function approximator

» ANN
» LSTD-Q
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Other approaches

@ Model learning
» Multiple agents reading out single model
» Model readout is faster than control frequency
@ Experience replay
o Parallelization of function approximator
» ANN
» LSTD-Q
@ Learning multiple tasks
» Horde architecture
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Other approaches

@ Model learning

» Multiple agents reading out single model

» Model readout is faster than control frequency
@ Experience replay
o Parallelization of function approximator

» ANN
» LSTD-Q

@ Learning multiple tasks
» Horde architecture
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Outline

© Parallel real-time model learning RL
@ DYNA architecture
@ Parallel DYNA
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DYNA architecture

value/policy
acting

planning direct
RL

model experience

>~

model
learning

[Sutton & Barto, 1998]
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Options

@ Model approximator

» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.
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Options

o Model approximator

» Grid of state transition probabilities
> Grid of feature transition probabilities
» ANN, LWR, GP, etc.

o Value approximator

» Tile coding
» Basis functions
» ANN, LWR, etc.
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Options

o Model approximator
» Grid of state transition probabilities
> Grid of feature transition probabilities
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» Basis functions
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@ Choice of model updates
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» Trajectories (from current state)
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e Updates per control step (K)
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Locally weighted regression

@ Find k nearest neighbors

» Approximate nearest neighbor
search

@ Weigh according to distance

wip) = e ()

where h is the distance to the i
kth nearest neighbor

o Fit linear model using
least-squares regression
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Parallel DYNA
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Outline

© Experiments
@ Computational efficiency
o Simulated systems
@ Real systems

3
TUDelft

A«4O0>» «F>» « E»

Parallel DYNA 14 / 25



Computational efficiency
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Inverted pendulum
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Two-link manipulator

o Reward —5¢% — 0.05¢3 — 5¢3 — 0.05¢3
@ 4 state dimensions, 2 action dimensions, tile coding

@ 3 discretized actions per dimension
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Two-link manipulator
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Real-world pendulum
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Real-world pendulum
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Real-world pick and place

@ 2 Dynamixel RX-28 servos

@ Move from pick to place
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Real-world pick and place
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Movie
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Outline

Q@ Summary
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Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.
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Summary
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by the control frequency.
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by the control frequency.
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Summary

@ RL on robots requires reduced sample complexity without
increasing computation time.

@ Moore's Law won't speed up our algorithms anymore
unless they are parallel.

@ Traditional parallel reinforcement learning won't work on
robots, because we have only one system and it is limited
by the control frequency.

e Model learning (parallel DYNA) solves this problem,
leading to significant speedups.

The bottleneck is now model learning speed.
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Experimental data

Task Setting Rise time (s)  Perf Speedup
Pendulum (sim) SARSA()) 650 -848

PDYNA 9.1 -935 72x

PDYNA! 12.6  -812 52x
Pendulum (real)  SARSA()) 561 -1027

PDYNA -1153

PDYNA! 28.1 -932 20x
Manipulator (sim) SARSA(M) 4521 -76

PDYNA 41.8 -81 108x
Manipulator (real) SARSA(\) 417 -55

PDYNA! 739 57 6x

PDYNA!? 6.9  -45 60x

1Decreased learning rate, no eligibility traces 2Using reference model for

rewards
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