Parallel DYNA Real-time model learning RL

Wouter Caarls, Delft University of Technology May 2nd, 2013

Reinforcement learning for robots

- Sample complexity of traditional RL algorithms is too high
 - Robots break
 - Too slow
- Computational complexity of sample-efficient algorithms is too high
 - System is idle while computing
 - Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

Reinforcement learning for robots

- Sample complexity of traditional RL algorithms is too high
 - Robots break
 - Too slow
- Computational complexity of sample-efficient algorithms is too high
 - System is idle while computing
 - Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

Reinforcement learning for robots

- Sample complexity of traditional RL algorithms is too high
 - Robots break
 - Too slow
- Computational complexity of sample-efficient algorithms is too high
 - System is idle while computing
 - Controlled by outdated control policy

This may increase total learning time

[Schuitema et al., 2010]

Why parallel reinforcement learning?

- Sequential CPU speed is not increasing to compensate for increased computational complexity
 - Moore's Law is about # of transistors, not clock frequency
 - More transistors can only do so much for single-threaded applications
 - Multi-core is the primary vectory of speed increase

Parallelism is the way to reduce computation time

Why parallel reinforcement learning?

- Sequential CPU speed is not increasing to compensate for increased computational complexity
 - Moore's Law is about # of transistors, not clock frequency
 - More transistors can only do so much for single-threaded applications
 - Multi-core is the primary vectory of speed increase

Parallelism is the way to reduce computation time

Outline

1 Parallel reinforcement learning

- Traditional approach
- Other approaches

2 Parallel real-time model learning RL

- DYNA architecture
- Parallel DYNA

3 Experiments

- Computational efficiency
- Simulated systems
- Real systems

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

Outline

- 1 Parallel reinforcement learning
 - Traditional approach
 - Other approaches
 - 2 Parallel real-time model learning RL
 - DYNA architecture
 - Parallel DYNA

Experiments

- Computational efficiency
- Simulated systems
- Real systems

4 Summary

Traditional parallel RL

State-space decomposition

- Split up state space
- Each processor learns in one subdomain
- Value exchange across borders

Multiple learners

- Many agents learning the same task
- Shared or replicated value function
- Periodic or prioritized value exchange

Traditional parallel RL

State-space decomposition

- Split up state space
- Each processor learns in one subdomain
- Value exchange across borders
- Multiple learners
 - Many agents learning the same task
 - Shared or replicated value function
 - Periodic or prioritized value exchange

Problems

Requires multiple systems

- Robots
 May differ between each other
- Simulations/models
 Differ from real system
- Limited by control frequency
 - Typically 20-100 Hz on real systems
 - Not a problem with simulations

[Kohl & Stone, 2004]

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

Problems

Requires multiple systems

- Robots
 May differ between each other
- Simulations/models
 Differ from real system
- Limited by control frequency
 - Typically 20-100 Hz on real systems
 - Not a problem with simulations

[Kohl & Stone, 2004]

- Multiple agents reading out single model
- Model readout is faster than control frequency
- Experience replay
- Parallelization of function approximator
 - ► ANN
 - LSTD-Q
- Learning multiple tasks
 - Horde architecture

- Multiple agents reading out single model
- Model readout is faster than control frequency
- Experience replay
- Parallelization of function approximator
 - ► ANN
 - LSTD-Q
- Learning multiple tasks
 - Horde architecture

- Multiple agents reading out single model
- Model readout is faster than control frequency
- Experience replay
- Parallelization of function approximator
 - ANN
 - LSTD-Q
- Learning multiple tasks
 - Horde architecture

- Multiple agents reading out single model
- Model readout is faster than control frequency
- Experience replay
- Parallelization of function approximator
 - ANN
 - LSTD-Q
- Learning multiple tasks
 - Horde architecture

- Multiple agents reading out single model
- Model readout is faster than control frequency
- Experience replay
- Parallelization of function approximator
 - ANN
 - LSTD-Q
- Learning multiple tasks
 - Horde architecture

Outline

- Parallel reinforcement learning
 - Traditional approach
 - Other approaches
- Parallel real-time model learning RL
 DYNA architecture
 - DYINA architectur
 - Parallel DYNA

Experiments

- Computational efficiency
- Simulated systems
- Real systems

4 Summary

DYNA architecture

- Model approximator
 - Grid of state transition probabilities
 - Grid of feature transition probabilities
 - ANN, LWR, GP, etc.
- Value approximator
 - Tile coding
 - Basis functions
 - ANN, LWR, etc.
- Choice of model updates
 - Random
 - Trajectories (from current state)
 - Prioritized sweeping
- Updates per control step (K)

- Model approximator
 - Grid of state transition probabilities
 - Grid of feature transition probabilities
 - ANN, LWR, GP, etc.
- Value approximator
 - Tile coding
 - Basis functions
 - ANN, LWR, etc.
- Choice of model updates
 - Random
 - Trajectories (from current state)
 - Prioritized sweeping
- Updates per control step (K)

- Model approximator
 - Grid of state transition probabilities
 - Grid of feature transition probabilities
 - ANN, LWR, GP, etc.
- Value approximator
 - Tile coding
 - Basis functions
 - ANN, LWR, etc.
- Choice of model updates
 - Random
 - Trajectories (from current state)
 - Prioritized sweeping
- Updates per control step (K)

- Model approximator
 - Grid of state transition probabilities
 - Grid of feature transition probabilities
 - ANN, LWR, GP, etc.
- Value approximator
 - Tile coding
 - Basis functions
 - ANN, LWR, etc.
- Choice of model updates
 - Random
 - Trajectories (from current state)
 - Prioritized sweeping
- Updates per control step (K)

- Model approximator
 - Grid of state transition probabilities
 - Grid of feature transition probabilities
 - ANN, LWR, GP, etc.
- Value approximator
 - Tile coding
 - Basis functions
 - ANN, LWR, etc.
- Choice of model updates
 - Random
 - Trajectories (from current state)
 - Prioritized sweeping
- Updates per control step (K)

Locally weighted regression

• Find k nearest neighbors

- Approximate nearest neighbor search
- Weigh according to distance

$$w(p) = e^{-\left(\frac{|p-q|_2}{h}\right)^2}$$

where *h* is the distance to the *k*th nearest neighbor

• Fit linear model using least-squares regression

♡>♡ □] = < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => < => <

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼|= 위 Q @

Outline

- Parallel reinforcement learning
 - Traditional approach
 - Other approaches
- 2 Parallel real-time model learning RL
 - DYNA architecture
 - Parallel DYNA

3 Experiments

- Computational efficiency
- Simulated systems
- Real systems

4 Summary

Computational efficiency

TUDelft

Inverted pendulum

TUDelft

Two-link manipulator

- Reward $-5\phi_1^2 0.05\dot{\phi}_1^2 5\phi_2^2 0.05\dot{\phi}_2^2$
- 4 state dimensions, 2 action dimensions, tile coding
- 3 discretized actions per dimension

Two-link manipulator

TUDelft

Real-world pendulum

DCSC DC Motor Setup

▲□▶▲圖▶▲콜▶▲콜▶ 릴릭 외익종

Real-world pendulum

TUDelft

Real-world pick and place

- 2 Dynamixel RX-28 servos
- Move from pick to place

Real-world pick and place

TUDelft

Movie

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼|= 위 Q @

Outline

- Parallel reinforcement learning
 - Traditional approach
 - Other approaches
- 2 Parallel real-time model learning RL
 - DYNA architecture
 - Parallel DYNA

Experiments

- Computational efficiency
- Simulated systems
- Real systems

▲□▶ ▲圖▶ ▲ 몰▶ ▲ 国▶ ▲ □▶

• RL on robots requires reduced sample complexity without increasing computation time.

- Moore's Law won't speed up our algorithms anymore unless they are parallel.
- Traditional parallel reinforcement learning won't work on robots, because we have only one system and it is limited by the control frequency.
- Model learning (parallel DYNA) solves this problem, leading to significant speedups.

- RL on robots requires reduced sample complexity without increasing computation time.
- Moore's Law won't speed up our algorithms anymore unless they are parallel.
- Traditional parallel reinforcement learning won't work on robots, because we have only one system and it is limited by the control frequency.
- Model learning (parallel DYNA) solves this problem, leading to significant speedups.

- RL on robots requires reduced sample complexity without increasing computation time.
- Moore's Law won't speed up our algorithms anymore unless they are parallel.
- Traditional parallel reinforcement learning won't work on robots, because we have only one system and it is limited by the control frequency.
- Model learning (parallel DYNA) solves this problem, leading to significant speedups.

- RL on robots requires reduced sample complexity without increasing computation time.
- Moore's Law won't speed up our algorithms anymore unless they are parallel.
- Traditional parallel reinforcement learning won't work on robots, because we have only one system and it is limited by the control frequency.
- Model learning (parallel DYNA) solves this problem, leading to significant speedups.

- RL on robots requires reduced sample complexity without increasing computation time.
- Moore's Law won't speed up our algorithms anymore unless they are parallel.
- Traditional parallel reinforcement learning won't work on robots, because we have only one system and it is limited by the control frequency.
- Model learning (parallel DYNA) solves this problem, leading to significant speedups.

Experimental data

Task	Setting	Rise time (s)	Perf	Speedup
Pendulum (sim)	$SARSA(\lambda)$	650	-848	
	PDYNA	9.1	-935	72x
	PDYNA ¹	12.6	-812	52x
Pendulum (real)	$SARSA(\lambda)$	561	-1027	
	PDYNA		-1153	
	PDYNA ¹	28.1	-932	20x
Manipulator (sim)	$SARSA(\lambda)$	4521	-76	
	PDYNA	41.8	-81	108x
Manipulator (real)	$SARSA(\lambda)$	417	-55	
	PDYNA ¹	73.9	-57	бx
	PDYNA ¹²	6.9	-45	60x

 $^1\mbox{Decreased}$ learning rate, no eligibility traces $^2\mbox{Using}$ reference model for rewards

TUDelft