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Abstract

Reinforcement Learning is a promising paradigm for adding learning capabilities to humanoid robots.
One of the difficulties of the real world is the presence of disturbances. In Reinforcement Learning, dis-
turbances are typically dealt with stochastically. However, large and infrequent disturbances do not fit
well in this framework; essentially, they are outliers and not part of the underlying (stochastic) Markov
Decision Process. Therefore, they can negatively influence learning. The main reasons for such distur-
bances for a humanoid robot are sudden changes in the dynamics (such as a sudden push), sensor noise
and sampling time irregularities. We investigate the effects of these types of outliers on the on-line learn-
ing process of a simple walking robot simulation. We propose to exclude the outliers from the learning
process with the aim to improve convergence and the final solution. While infrequent sensor and timing
outliers had a negligible influence, infrequent pushes heavily disrupted the learning process. By excluding
the outliers from the learning process, performance was again restored.

1 Introduction

Reinforcement Learning (RL) is an attractive paradigm for adding autonomous learning capabilities to ma-
chines such as humanoid robots. By means of interaction with the real world, i.e., trial-and-error learning,
the system is capable of learning complex behavior while receiving coarse feedback in terms of positive
and negative rewards. An added complexity of real-world systems is the presence of disturbances. For a
real-time dynamic system such as a humanoid robot (see Figure 1(a)), we have found the main sources of
disturbance to be sensor noise, noise on the timing (i.e., sample duration) and changes in the dynamics such
as a sudden push or height differences in the floor. Disturbances can be (virtually) instantaneous, such as
sensor noise and timing hiccups, or lengthier such as wind, changing floor slope, or (temporary) sensor drift.

()

Figure 1: a. LEO: a 2D walking robot suitable for on-line Reinforcement Learning [8]. b. Simplest walker
model, the most elementary model that describes walking behavior.



Within RL, the learning agent and its environment are usually modeled as a Markov Decision Process
or MDP. It is common practice for RL algorithms to allow stochastic state transitions (and rewards) in
the MDP [3, 6, 11]. Usually, averaging over sufficient experiences will allow the algorithm to find the
optimal solution to such a stochastic MDP. However, not all disturbances can be considered to be part of
the stochastic nature of the problem. Some disturbances, especially large and infrequent ones, should be
considered as outliers. While some algorithms — particularly off-line ones — are robust against outliers, to
our knowledge no in-depth study has been made of the effect of realistic outliers on learning a control policy
for real-time dynamic systems.

We are primarily interested in on-line Temporal Difference (TD) learning, such as Q-learning and
SARSA [10], because this class of algorithms requires a minimal amount of prior knowledge and does
not restrict the space of possible solutions. This is important for creating learning techniques that make
machines truly autonomous, i.e., not dependent on an engineer pre-programming a part of the solution.

Dealing with outliers has two main aspects. The first step is to detect the outlier. Once it is detected, the
system can reject the outlier, excluding it from the learning process. A possible further step is correction,
i.e., to try and counter the disturbance while it is active, which is only possible when the disturbance has
a significant duration. Appropriate correction requires classification of the outlier to predict its evolution.
Deliberately including disturbances in the learning process might result in a solution that is more robust
against disturbances. However, this is only possible if they occur often enough; in other words, if they are
part of the stochastic nature of the system. The focus of this paper is on the effects of outliers and the added
value of rejecting them.

Several techniques have been studied to make RL more robust against disturbances [9, 7, 4, 1]. While
this work offers important and useful techniques, the difference in effects of various types of disturbances
remains unknown. We explore the influence of several types of outliers on the learning process of a simple
simulation' model of a walking robot — the simplest walker model [5] — in order to assess the need for further
steps such as detection and classification. To illustrate the benefit of being able to detect outliers, we test
the effect of excluding the outliers from the learning process — a relatively simple operation in TD learning.
We do not look into the ability of the learning agent to withstand stochastic disturbances, e.g. normally
distributed disturbances of moderate size; we only consider large, infrequent disturbances that can best be
regarded as outliers. We also do not look into slow and permanent changes in the system or its environment,
because this requires different properties of the learning algorithm: the ability to adapt to new situations.

This paper is organized as follows. In Section 2, we give a theoretical overview of the Reinforcement
Learning framework and discuss the influence of large disturbances in Section 3. In Section 4, we describe
the experimental setup (simulation). We present our results in Section 5 and our conclusions in Section 6.

2 Reinforcement learning

In this section, we briefly introduce the Markov Decision Process and the main on-line Temporal Difference
learning algorithms Q-learning and SARSA. For a thorough introduction to RL, see, e.g., [10].

Markov Decision Process The common approach in RL is to model the learning system as a Markov De-
cision Process (MDP) with discrete time steps labeled & = 0, 1, .. € Z with sampling period h. The dynamic
systems that we are interested in - robotic systems - have a continuous state space .S and a continuous action
space A. The MDP is defined as the 4-tuple (S, A, T, R), where S is a set of states and A is a set of actions.
The state transition probability function 7' : S x A x S — [0, co) defines the probability that the next state
Sk+1 € S belongs to a region Sy 1 C S as fSk+1 T(sk,ax, s')ds’, when executing action a; € A in state
s € S. The reward function R : S x A x S — R is real valued and defines the reward of a state transition
as rg+1 = R(Sk, ak, Sk+1). An MDP has the Markov property, which means that 7" and R only depend on
the current state-action pair and not on past state-action pairs nor on information excluded from s.

The goal of the learner is to find the optimal control policy 7* : § — A that maps states to actions and

o0
that maximizes, from every initial state so, the long term sum of discounted rewards R(sg) = > 7*rii1
k=0

in which = is the discount factor. The action-value function or Q-function Q(s, a) gives the estimated return
of choosing ay, in si and following the control policy afterwards: Q(sg, ar) = E{rr+1 + YR(sk+1)}-

IWhile in simulation one can choose when and how to apply a disturbance, on a real robot, this happens mostly involuntarily.
Therefore, we use simulations throughout this paper to show the effects of several types of large disturbances.



Online RL implies that the system learns from interaction with the real world. In this paper, we assume
that the state transition probability function 7" is unknown to the learning agent (model-free RL). Although
there are multiple classes of online RL algorithms, in this paper we focus on the class of (online) Temporal
Difference learning algorithms.

Temporal Difference learning Temporal Difference (TD) learning methods mostly aim at directly esti-
mating the Q-function Q(s, a), from which the policy is derived by selecting the control action for which
Q(s, a) is maximal. Popular on-line algorithms in this category are Q-learning and SARSA. After every state
transition, Q (s, ax) is updated as follows

Q(sk, ax) < Q(sk, ar) + adTD & (1)

where « is the learning rate, -y the discount factor and dp is the temporal difference (TD) error, which is
calculated differently for SARSA and for Q-learning:

OTDsarsak = Tht1 +YQ(Sk41, art1) — Q(sk, ar)
(STDQ,k = Tk+1 +'7H}3XQ(5]<+1,CL/) _Q(sk,ak) 2)
While SARSA uses the Q-value of the actually selected action in its update rule, Q-learning uses the maxi-
mum achievable Q-value, which does not depend on the executed policy. This makes SARSA an on-policy
and Q-learning an off-policy algorithm.

To speed up convergence, SARSA and Q-learning can be combined with eligibility traces, thereby form-
ing SARSA()) and Q(A), respectively. With eligibility traces, learning updates are not just applied to the
previously visited state-action pair (s, ax ), but also to pairs that were visited earlier in the episode. In this
process, more recently visited (s, a)-pairs receive a stronger update than pairs visited longer ago. The update
rules become

Qr+1(s,a)= Qr(s,a) + adrpeg(s,a)
1 Jif s = sk, a0 =ag 3)

ek(S, a) 7)\61@71(87 a) , otherwise.

which are now executed for all s € S,a € A. At the start of a new episode, e is reset to 0. For Q(A), the
eligibility of preceding states is only valid while the greedy policy is being followed. Thus, for Q(\), e must
also be reset after an exploratory action.

For Q-learning and SARSA, the greedy policy selects actions ay, greedy according to

Ak greedy — arg ma‘XQ(Sk’a a/)' “)
a/

A widely used action selection scheme that includes exploratory actions is the e-greedy policy, which defines
an exploration rate € at which random actions are chosen (and greedy actions otherwise).

3 Large disturbances during Reinforcement Learning

For a real-time dynamic system such as a humanoid robot, the main sources of outliers are sudden changes
in the dynamics, sensor and actuator noise and sampling time irregularities. We now discuss the effect of
each of these categories of outliers on the Reinforcement Learning process, as well as disturbance rejection
and detection.

1. Outliers due to sudden changes in the system dynamics or the environment An external distur-
bance such as an instantaneous push or a step-up or step-down in the floor can cause an outlier in the state
transitions and bring the learning agent into an exotic state s{*° from which it needs to recover. This may
not always be possible. See Figure 2a for a one-dimensional example. The agent will erroneously relate
Q(Sk—1, ak—1) to Q(s77°, ax). Especially when the agent cannot recover from s{*°, states on good solution
paths might be linked to the negative results of the disturbance. The agent cannot relate and thus not reward
its behavior before the disturbance to the reward that it actually deserves.

When the agent almost never suffers from such disturbances, it probably does not have enough experi-
ence to recover from exotic states. However, when it is disturbed frequently, it is able to practice in these

regions of the state space as well, so that it automatically learns to correct these outliers.
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Figure 2: Effect of disturbances. () is the actual state, X is the measured state, and e is the state on which the
effective action at that timepoint based. (a) Instantaneous push. (b) Erroneous sensor reading. (c) Sample
time irregularity.

The effect of actuator noise is similar. However, actuator noise is likely to bring the system in a state that
it also could have visited under normal conditions, e.g. due to exploration. Therefore, this type of outlier is
less interesting and we do not further look into it.

In summary, the learning problem becomes larger because a larger part of the state space is visited.
Furthermore, with every outlier, parts of the state space are connected that are in principle not related, which
can negatively influence learned behavior in frequently visited parts of the state space.

2. Outliers due to sensor noise In case of an outlier in the sensor reading, the system will perceive a state
s¢'" that is different from the actual sj. Because of this, it will experience two erroneously perceived state
transitions; (sy_1,ar—1) — (sg'",ri’") and (s5/", ar) — (sp41, 7547 ), With 7, = R(sg_1,ax_1, si). See
Figure 2b for a one-dimensional example. The effect on the learning agent is that Q(sx—1,ar—1) will be
related to Q(s§"", aj) — the latter most probably having a Q-value unrelated to the problem with s{"" being
an outlier. Next, Q(s7"", ai) is related to Q(Sk+1, ax+1). When using eligibility traces however, it is likely
that the subsequent TD updates (see (2)) largely cancel each other out. When using SARSA, for example,

the two subsequent errors in the TD updates are:

Adrpr—1 =090y — OGP =i — e + v (Q(si, ax) — Q(sk, ax)) )
AdTD Kk = 05Dk — 05 =il = Ter1 + Q(sk, ar) — Q(s5", ax)

When using eligibility traces and when s} is not terminal, both incorrect TD updates are applied to all
Q(s,a) with e(s,a) # 0. The net error function A(s, a) then becomes (also see (3)):
A(s,a) = a(Adrpx—1ex—1(5,a) + Adrpxex(s,a)) = a(Adrpx—1 + AdrpxYA)ex—1(s,a) ©)

o
a(ry™ = YA = rhan) £ (1= N(QUsys ar) — Q(sk, ax)))ex—1(s; a)

with ey (s,a) = yAek—1(s,a). A(s,a) is maximal for (sp_1,ar—1) because ex_1(sx—1,ar—1) = 1. If the
reward function R is simple (e.g., sparse with possibly a time penalty) and sy, .., is not a goal state, it often
holds that 7" = ry and 7"} = ry1, in which case the remaining error goes to 0 when A approaches 1.

However, the agent will base a; on Q(s;mrr, ), which results in a suboptimal action. This action can
remove the agent from its optimal path - but not worse than when an exploratory action was chosen. Unlike
with a dynamics disturbance, the agent has a fair chance to successfully continue its trial and receive the
reward it deserves based on its behavior before the disturbance.

In summary, the most prominent effect of a sensor outlier are two learning updates with an erroneous
TD-error (with eligibility traces, the effect is usually very small) and one extra random action.

3. Outliers due to sampling time irregularities When the sampling time is suddenly disrupted, e.g. due
to calculations taking longer than normal, the dynamics of the system evolve longer (or shorter) than normal.
Depending on the type of action that the agent executes, the action itself will be shortened or extended,
which results in a different resulting state. This is true for actions like motor torque or voltage when they
are maintained until other actions overwrite them. However, unless the disruption lasts a large multiple of
the sampling time, the effect is expected to be limited. See Figure 2c for a 1-dimensional example.

In summary, an outlier in sampling time is expected to have a limited effect, unless it lasts a large
multiple of the sampling time.



Disturbance rejection and detection For on-line TD-learning, simply skipping the learning update for
state transitions that include outliers is enough to exclude the outlier from the learning process. When
eligibility traces are used, the traces can simply be cleared once an outlier is detected. This skips the faulty
learning update. Note that clearing the eligibility trace can slow down the learning process.

In this paper, we do not focus on the subject of detection of outliers. In our simulations, we simply
signal the learning algorithm that an outlier was detected at the moment we apply the disturbance. For on-
line disturbance detection on robotics systems, a state transition model of the robot and its environment is
needed, preferably learned on-line. Model learning techniques that might be appropriate for such systems
are Locally Weighted Learning (LWL) [2], a local linear regression technique, and SmartSifter [12]. Once
a model is available, every state transition can be compared to the expected state transition based on the
model. If the prediction differs significantly from the measurement, the measurement can be labeled as an
outlier. Prediction intervals can serve as a significance measure and are easily calculated for LWL.

4 [Experimental set-up

In order to evaluate the effect of several types of outliers on the learning process and the efficacy of skipping
the learning update, we have performed simulations of a simple two-dimensional system - the simplest
walker - that learns to walk. To simulate a disturbance, the walking system was severely perturbed for a
single time step. Because we do not focus on the outlier detection aspect, we simply signal the learning
algorithm of the presence of the outlier when the disturbance was applied. To reject the outlier, the learning
update is not performed and the eligibility trace is cleared. We tested three types of disturbances:

1. An instantaneous push, which is a change in the dynamics with a duration of one time step.
2. An erroneous sensor reading (spike noise).
3. A sampling time irregularity, resulting in a sample that takes longer to acquire.

The relevant parameters are a learning rate « of 0.4, exploration rate ¢ = 0.05 (discounted such that it is 0.01
after 30 simulated hours), time discounting factor v = 0.99 and trace decay rate A\ = 0.92. The time step
was 0.2s. We keep the learning rate constant, which is realistic for a learning robot; it can then continuously
adapt to possible slow changes in the environment or its own dynamics, such as changes in friction due to
wear and tear of the system.

The simplest walker The simulated system is a compass walker [5] consisting of two rigid legs of unit
length connected by a frictionless hinge at the hip (Figure 1(b)). A mass of unit size is located in the hip
of the walker. The legs are massless, while the feet contain an infinitesimally small mass. This results in
pendulum-like behavior of the swing leg. We allow the swing foot to be briefly below floor level during
its swing, which is inevitable for a walker without knees; the second time the swing foot is at floor level
height, the walker makes a step and the swing leg becomes the new stance leg. The system is described by
the following equations of motion:

0] sin(f — o) 7

[ é } N [ sin(¢) (62 — cos(0 — o)) + sin(d — o) @

in which 6 is the angle between the stance leg and the floor normal and ¢ is the relative hip angle. We

used 4th order Runge-Kutta to integrate (7) with a time step of 0.0125s. At heel strike, the collision with the

floor causes the system to lose energy, and the swing leg becomes the new stance leg and vice versa. The

impact is modeled as an instantaneous velocity change from the pre-collision state(—) to the post-collision
state (+) by:

{ Z: ] - { cos(29>c(01s(—29c)os<2e>) a ®)

This unactuated system is able to passively and stably walk down a slope in a gravity force field with
unit magnitude. The slope angle o is 0.004rad. For this passive walking gait, a footstep takes around 4
seconds (20 time steps). Its stability and walking speed can be increased by adding actuation. Because the
legs are virtually massless, the action consists of an acceleration of the swing leg instead of a torque. This
acceleration has no effect on the movement of the stance leg, only on the swing leg. The agent can choose its
action from the range [—1.2,1.2]ms~2 in 15 uniformly spaced steps. The state space of the learning agent



is spanned by 6, 0 ¢ and (;5 At the start of a trial, the walker is randomly set to an initial condition that is
known to contain enough energy to start walking (but not necessarily leads to a stable walking pattern). A
trial ends when the walker fell down or after 100 seconds. The rewards are —1 for every action, 50 per meter
at every footstep and —50 when it falls. By rewarding traveled meters and punishing time, the walker will
optimize towards maximum walking speed. In most gaits we observed, a footstep took around 1.6 seconds.

Test scenarios We analyzed three types of large disturbances. In each test, we added a specific type of
disturbance to the system at random time intervals with an average of one disturbance every 50 time steps.

The first type of large disturbance is a physical perturbation of the system in the form of an instantaneous
push, which leads to an outlier in the state transitions (Figure 2(a)). In our simulation this was effected by
applying an instantaneous change in angular velocity of the stance leg, distributed uniformly over the ranges
[—0.044, —0.038]rad/s and [0.038, 0.044]rad/s. This corresponds to a change in its velocity of rougly 25%-
100% depending on the moment of application.

The second type of large disturbance is sensor spike noise. Potentiometers commonly applied to measure
joint angles can lose contact, resulting in noise spikes. Such a disturbance only changes the state reported
to the learning module, while the physical system itself remains unchanged (Figure 2b). In our simulation,
an outlier was implemented by replacing the sensor reading of the hip angle by a random value distributed
uniformly over the range [, J]rad. In addition, we changed the hip angular velocity as if it resulted from
differentiating the faulty position signal.

The third type of large disturbance is sampling time irregularity. While the motor control policy of most
robots runs on a proper real-time operating system, samples may still be delayed or lost due to commu-
nication errors or algorithmic calculations taking occasionally longer than normal. This was simulated by
omitting samples at random, causing the last chosen action to take twice as long.

5 Results and Discussion

We present our test results as learning performance graphs, showing the average traveled distance of the
walker versus simuation time. After every 20 episodes, a series of 11 test runs — each 100 seconds long —
was performed. By measuring traveled distance, an increase in performance in terms of faster walking shows
an increase in traveled distance. On the other hand, equally fast but unstable walking results in the walker
falling easily, resulting in on average a decrease in traveled distance. Each point in the graph is an average
of 20 tests and includes the 95% confidence interval of the average. Usually, the walker quite quickly learns
to walk, after which it (slowly) continues to optimize for walking speed.

The performance of learning to walk using the SARSA algorithm without disturbances is shown as
baseline in, e.g., Figure 3(f). We see that the walker learned to walk after about 1.5 hours, after which
it slowly keeps increasing its average walking speed, which increases its traveled distance during the 100
second test runs. We now compare this result to our different disturbance scenarios.

Push We first compared a learning process disturbed with random pushes — but undisturbed during the
test runs — to undisturbed learning. This allows us to ascertain how well we do on learning the underlying
undisturbed problem. In Figure 3(a) we can see that by muting the learning algorithm during an outlier as
described in Section 3, we do indeed learn the optimal policy. Without rejection however, the performance
is significantly worse. Apparently, Q-values of states that regularly visited during walking are severely
affected. Figure 3(b) shows the more realistic scenario we get when we include disturbances in the test
runs. Again, undisturbed learning and outlier rejection perform similarly (but worse than testing without
disturbances, of course), while regular learning in the disturbed system has a lower performance. This
indicates that the SARSA algorithm is unable to treat the outliers in the dynamics as stochastic variations.
Learning without disturbances while testing with disturbances performs slightly worse than learning with
and rejecting outliers. This can be explained by the fact that the disturbed learner visits a larger part of the
state space (i.e., more exotic states), from which it learns to recover, than the undisturbed learner. Note that it
might be expected that not rejecting outliers could eventually improve performance over rejection, because
the system could possibly learn a more cautious walking gait. In our simulations this was not the case.
Although we motivated our choice of keeping the learning rate constant (see Section 4), we tested the
effect of slowly reducing the learning rate over time (results not shown here). The low learning rate at the
end of the runs allowed regular SARSA to perform enough averaging to endure the disturbances and reach



the same level of performance as outlier rejection. However, it converged more slowly. We also compared
the performance of Q-learning and SARSA, but could not find a significant difference between the two,
indicating that outlier rejection is equally applicable to both algorithms.
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Figure 3: Performance comparison for the push scenario (a, b), sensor spike scenario (c, d) and sampling
time irregularity scenario (e, f) using SARSA.

Sensor spike noise Our second testing scenario is sensor spike noise. In Figure 3(c) we see that one
spike every 50 timesteps does not significantly reduce the performance from the baseline. As described in
Section 3, the eligibility trace masks the disturbance. The situation changes when we increase the frequency
of the spikes to once every 5 timesteps: overall performance drops, and only regular unmuted learning
learns to deal with the disturbances (Figure 3(d)). Both outlier rejection and undisturbed learning plateau at
a significantly lower performance level. Additionally, the convergence of muted learning is slowed by the
clearing of the eligibility trace. This shows that for certain disturbances, outlier rejection can actually have
a negative effect.

Sampling time irregularity The final scenario involved omitting samples. As can be seen in Figure 3(e),
there is again no significant difference from the baseline. More interestingly, even in the unrealistic case
of one lost sample every 5 timesteps, the regular unmuted learning process achieves only a slightly lower
performance than the baseline (Figure 3(f)). This indicates that our walking system is quite robust against
sampling time irregularity if it is allowed to learn to anticipate them. The frequency of the disturbance now
allows it to be treated as stochastic noise.

6 Conclusions

Stochastic system behavior is part of the stochastic MDP framework and poses no problem for most learning
algorithms, other than that it usually results in the need to average over more experience and thus longer
learning times. However, the effect of large and infrequent disturbances — or outliers — is relatively unknown.
Every real system will suffer from outliers to some degree. They can occur in sensor readings, timing or in
the dynamics of the system or its environment. In this work, we evaluated the effects of outliers on a simple



simulation model of a walking robot, which learned to walk using SARSA(\). We tested the effects of three
types of outliers: an instantaneous push, a sensor reading outlier, and a sampling time irregularity.

Pushing the walker at random moments, on average once in approx. 6 footsteps, had a dramatic effect on
the learning time and system performance. A simple remedy — rejecting the outliers by excluding the faulty
state transitions from the learning process — completely restored the performance of the walker. After an
equal amount of practicing hours, the ’ignorant’ walker performed only roughly half as good as the outlier
rejecting walker. The introduction of random spike noise on the sensor reading of the hip angle, on average
once every 50 measurements, had an undetectable effect on the learning agent. When spike noise was
applied ten times more often (unrealistic), outlier rejection actually resulted in a decrease in learning speed.
This can be explained by the fact that we excluded outliers in SARSA()) by clearing the eligibility traces,
thus on average once in 5 samples, which slowed down learning. Doubling the sampling period randomly,
on average every 50th sample, also had an undetectable effect on the learning agent. When this was done ten
times more often (unrealistic), the effect became noticeable but was still surprisingly small. Again, rejecting
outliers by clearing the eligibility traces led to a large drop in learning speed. The rejection process had a
much more negative impact on the learning performance than the outliers themselves.

We can conclude that for this simple model, large disturbances in the dynamics have by far the largest
influence on the learning process, compared to timing and sensor outliers. In the future, we will test whether
these conclusions hold for a more complex model of our walking robot Leo.
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