
Accelerating reinforcement learning on a robot
by using subgoals in a hierarchical framework

Bart van Vliet Wouter Caarls Erik Schuitema Pieter Jonker

Delft University of Technology, Mekelweg 2, 2628CD Delft

Abstract

Reinforcement learning is a way to learn control tasks by trial and error. Even for simple motor control
tasks, however, this can take a long time. We can speed up learning by using prior knowledge, but this
is not always available, especially for an autonomous agent. One way to add limited prior knowledge is
to use subgoals, defining points that the controller should aim for on the way to reaching the real goal.
In this study, we use the MAXQ hierarchical framework to specify subgoals. This decreased the learning
time by a factor two on a robot leg step-up task and we show that tests on a real robot give similar results.
The worse end performance that is a result of the reduced solution space can be partially canceled out by
hierarchical greedy execution. To our knowledge, this is the first time the MAXQ framework is applied to
a real robot.

1 Introduction
As robots become more versatile, it becomes harder to design their

Figure 1: Leo, a 2D bipedal au-
tonomous robot, in its testing har-
ness. Made for walking, its task in
this paper is to learn how to make a
step onto the platform.

controllers. Instead, we could use the reinforcement learning (RL)
framework. In this framework, the robot learns to perform tasks by
maximizing the rewards it receives by interacting with the environment.
In order to optimize, the robot explores by performing random actions.
In this way, RL algorithms can find the optimal solution without the
need of knowledge about the system. However, learning a task with RL
can take a long time. This is why researchers are looking for ways to
speed up the learning process. This can be achieved by the use of prior
knowledge. However, prior knowledge is not always available, espe-
cially for autonomous robots, and can lead to suboptimal solutions. To
accomplish a faster learning process without using a lot of prior knowl-
edge, while still aiming for an optimal solution, we look into the use of
subgoals. These subgoals can be regarded as guiding waypoints, placed
on the path to the goal of the task, and are either given or discovered by
an algorithm, like L-Cut [11].

In this paper we test the use of subgoals on a task performed by a
single leg of our robot LEO; see Fig. 1. We start by discussing related
work in Sec. 2, theory in Sec. 3 and the experimental setup in Sec. 4.
In Sec. 5.1 we show that subgoals speed up the learning process. Also,
we show that the robot learns even faster when adding a region for each
subgoal where it is allowed to be executed, and that hierarchical greedy
execution indeed helps to bring the solution closer to the optimal solution. Then we show the influence of
bad subgoal placement in Sec. 5.2. Lastly, we compare simulation results with results of the real robot in
Sec. 5.3, which is, to our knowledge, the first time the hierarchical framework MAXQ [1] is applied to a real

robot. We present our conclusions in Sec. 6.

2 Related work
One way to implement subgoals in the RL framework is to use reward shaping, by giving extra reward for
reaching a subgoal. In this way, the learner receives more frequent positive feedback on its path to the
goal. In [6] a robot had to grasp a puck and drop it at home. By giving a reward for grasping the puck,
the learning speed was improved. However, the robot can quickly discover it can gather many rewards by
continuously grasping and dropping the puck, each time collecting the subgoal reward. Such behavior was
shown in [8] and to avoid this, a penalty has to be given for such behavior. In [6] this was done by giving
a penalty for dropping the puck away from home, but it is not always this straightforward to find a way to
penalize the repetitive behavior. In [7] and [4], more general methods to avoid the cyclic movements have
been presented, however, these methods require much prior knowledge.

Another way to solve the problem is by adding an extra state variable, which tells which subgoal has
been reached. In [12] this is done by making a subtask for each subgoal. The root task learned to execute
these subtasks in the correct order. Such a hierarchical approach is believed to be a good way to make RL
suitable for complex tasks and more general frameworks have been developed later, of which Options [15]
and MAXQ [1] are the most popular. These frameworks also add a region in state space for each subtask,
where the subtask is allowed to be executed. This limits the choice for the root task, which improves the
learning speed. Another advantage of these frameworks is that they can be extended with hierarchical greedy
execution (HGE). When this is used, the root task is allowed to go to the next subgoal, while the previous
subgoal has not been reached yet. This is beneficial when the subgoals are not placed on the optimal path,
since in contrast to [12], the subgoals do not necessarily have to be visited. In this case, HGE can bring the
solution closer (or make it equal) to the optimal solution.

3 Theory
In the reinforcement learning (RL, [14]) framework, an agent interacts with the environment. The agent
performs actions and perceives the state and rewards. The goal of the agent is to maximize the sum of
rewards it perceives. The interaction is modeled as a Markov decision process (MDP). It is a discrete
time process where, each time step t, the agent perceives a state st and chooses an action at. The next
time step, the agent ends up in a new state st+1 with probability T (st, at, st+1) and receives a reward
rt = R(st, at, st+1). This reward function R is often constructed by the designer, while the state transition
probability function T is generally unknown. The agent chooses actions based on the state it is in, according
to: at = π(st), where π is the policy of the agent (deterministic in our case). A policy should exploit its
current knowledge, but should also explore to find better solutions. To do so, we chose to use an ε-greedy
policy, which simply chooses a random action with probability ε and a greedy action otherwise. A greedy
action is the one where the policy expects the highest sum of future rewards. In order to find the greedy
action, the policy uses the action-value functionQ(s, a). It contains the expected sum of discounted rewards
for each state-action pair when taking action a in state s and following policy π afterward:

Q(s, a) = E

{
iend∑
i=1

[
γi−1rt+i

]
|st = s, at = a

}
(1)

where γ ∈ [0, 1] is the time discount factor. The actual learning is done by updating the Q values such that
they make successively better approximations of (1) (Q(λ)-Learning, [16]), for k = 0...t:

Q(st−k, at−k)← Q(st−k, at−k) + αγkλkδ (2)

δ = rt + γmax
a′

Q(st+1, a
′)−Q(st, at)

with α the learning rate and λ the eligibility trace discount factor. Eligibility traces are used to speed up the
learning process. In short, the trace contains a history of state-action pairs. Instead of only updating the Q
values of the last state-action pair, the whole history can be updated. One can argue that state-action pairs
further back in history are less responsible for the last rewards. Therefore, the update of a state-action pair
of k steps ago, is discounted by λk, with trace discount factor λ ∈ [0, 1]. However, some state-action pairs
can occur multiple times in the trace. To avoid such pairs getting an update that is too large, we limit the net
trace discount factor to 1, as in [13] (replacing traces).

3.1 Hierarchical RL
At the basis of hierarchical reinforcement learn-

MaxRoot

Goal

QGoal QSubgoal 1

Max
Subgoal 1

Max

QMoveFor
Goal

QMoveFor
Subgoal 1

Move

Subgoal 2

QSubgoal 2

Max

QMoveFor
Subgoal 2

Figure 2: The MAXQ graph for one subgoal, each extra
subgoal adds three nodes, like the dotted nodes.

ing (HRL) lies the Semi-MDP (SMDP) framework
[15]. An SMDP is equal to an MDP, except that it
allows an action to take multiple time steps. The
rewards collected after taking an action that took
N time steps, have to be discounted by γN .

The SMDP framework allows us to break up a
single task into smaller tasks: a hierarchy of sub-
tasks. We used the MAXQ framework [1], which
we extended in [9] to include eligibility traces:
MAXQ-Q(λ). In this framework, each subtask has
its own state space, action space and goal. A sub-
task can only be executed when the current state
is inside the subtask’s region. The subtask at the
top of the hierarchy, the root task, tries to solve the
original task, while the other subtasks only try to
reach their own local goal. The root task usually
is an SMDP; its actions consist of executing a subtask on a lower level. Once the root task has chosen a
subtask to execute, this subtask is in control until it reaches its goal or gets outside of its region. Then the
root task can select another subtask to execute. The subtasks on the lowest level of the hierarchy perform
actions from the original task, which are called primitive actions. A MAXQ hierarchy with subgoals can be
visualized in a graph as shown in Fig. 2.

To make subtasks reach their own goal, each subtask i has its own pseudo reward function R̃i(s, a, s′).
These pseudo rewards are not visible to other subtasks, they merely influence the policy of the subtask.

Once the subtasks have learned sufficiently, they will always reach their goal. However, these goals may
not lie on the optimal path of the overall task, the problem that the root task has to solve. To get closer to the
optimal path, we can use hierarchical greedy execution (HGE) as described in [1]. The idea is to interrupt a
currently active subtask and give the root task the opportunity to choose another subtask to execute. In this
way, a new subtask can be given control before the previous executed subtask could reach its goal.

However, interrupting a subtask influences the learning process. For a parent task, theQ-value of execut-
ing a subtask can only be updated when the subtask has completed, leading to slower learning. In addition,
the subtask itself will learn slower when it is refrained from reaching its goal. Therefore, we should not use
HGE from the beginning but enable it after the subtasks have sufficiently learned to reach their goals.

In [1], HGE is gradually enabled by interrupting the currently executed subtask after a decreasing amount
of time steps on a fixed schedule. We chose to slowly increase the chance of an interruption, according to:

pinterruption =

{ κ
(thge−t)+κ for t < thge
1 for t ≥ thge

}
, (3)

where κ is a parameter to modify the curvature and thge the time when HGE is fully active (i.e., when there
is an interruption each time step). In case the root task has no other option but to choose the same subtask
again, interrupting would not lead to a different choice, it would only clear the eligibility trace. Therefore,
we do not interrupt in such a case. More information about the MAXQ-Q(λ) algorithm can be found in
appendix A.

4 Experiment
To test the use of subgoals on a robot, we performed experiments on a simulated and a real robot leg. The
task we gave it is a motor skill task without a straightforward solution.

4.1 Setup
The robot leg is part of a humanoid robot, Leo, of approximately half a meter tall [10]. For this research
we built a stand (see Fig. 1) to which we fixed the torso of the robot; we only used the left leg. Each joint
is actuated by a Dynamixel RX-28 motor (Robotis Co., Ltd., Seoul, Korea). Although this is a servo motor,
we bypass the internal controller and operate it in voltage mode. To detect foot contact, there are two force
sensors at the bottom of the foot, one at the toe and one at the heel. The simulation of the leg is made with

Joint Angle Velocity
Hip 0.0476 rad 6.67 rad/s
Knee 0.0769 rad 9.09 rad/s
Ankle 0.100 rad 11.1 rad/s

Figure 3: State space resolution per tiling

Start

Goal

20

50

30

81

105

116

20

10

Figure 4: The task to perform: make a step
up. Measures are in mm.

Goal 10
20

50

subgoal

Start

(a) 1 subgoal, position a

Goal
50

20

50

subgoal

Start

(b) 1 subgoal, position b

Goal 10 40

70

subgoal

Start

(c) 1 subgoal, position c

Goal
50

40

70

subgoal

Start

(d) 1 subgoal, position d

Goal 10
20

subgoal 2

Start

50

subgoal 120 30

(e) 2 subgoals

10
20

subgoal 2

Start

50

subgoal 1

Goal

60

30

20

20 30

subgoal 3

(f) 3 subgoals

Figure 5: Placement of the subgoals (squares) and their regions where
they are allowed to be executed (colored areas), measures are in mm.

ODE [3]. We used dimensions, masses and inertias equal to those of the real robot, and a simulation of the
torque behavior of the motors [10].

The primitive actions consist of choosing between 5 voltages in the range [−10.7, 10.7]V for the hip
and knee motors, resulting in 25 possible actions. The ankle motor was pre-programmed to keep the foot
perpendicular to the lower leg. The sampling frequency was 20 Hz. The state of the robot consists of 7
variables: the foot contact and the angle plus angular velocity of each joint. The state was approximated
by tile coding [14] with 16 tilings, the resolutions are listed in table 3. The contact variable is binary; at a
certain force at the toe and heel, the variable is true.

4.2 Task
The task of the robot is to make a step up, as shown in Fig. 4. An episode starts with the leg in a straight
down position and ends when the goal is reached, or after 60 (simulated) seconds, equal to 4500 time steps.
The goal is reached when the foot makes contact at both the toe and heel, which is only possible in a position
near the position shown in Fig.4.

We used a simple reward scheme, where a reward of 100 was given when the task was completed. Each
time step a reward of -3.75 was given, to make the robot minimize the time to reach the goal. A subtask
receives a pseudo reward of 100 when reaching its subgoal and a pseudo reward of -100 when leaving its
region. A subgoal was defined as a small position area, irrespective of speed. We defined subgoals in this
way to avoid suboptimal goal speed.

The Q values were initialized with random values between -1 and 1. In this way, a path that has timed
out, left the region, or took too much time to reach the subgoal obtains lower values than the initial values,
since these paths gathered many negative rewards. This results in more exploration at the early learning
stage, as the agent will avoid these negative paths.

The learning parameters were not tweaked, since the initial choice was satisfying. We chose α = 0.25,
ε = 0.05 and λ = 0.69. Since the task is episodic and there is a time penalty, we set γ = 1. For the HGE
parameters, we used thge = 300 s and κ = 5 s.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Learning time (min)

S
te

p
s
 t

o
 g

o
a

l

0 sg

1 sg

2 sg

3 sg

10 20 30 40
0

20

40

60

80

Figure 6: Learning curves with standard error bars at p =
0.05 (n = 100) for flat learning with 0 to 3 subgoals,
and zoomed inset. A fast and slow learning stage can be
distinguished.

2.a

1

3

2.b

2.c

2.d

Flat

2.d, with regions

2.d, with HGE

Figure 7: Subgoal positions and solutions found by dif-
ferent learning strategies: no subgoals, using subgoal 2.d
with regions, and adding hierarchical greedy execution.
The lines represent the position of the toe over time.

4.3 Experiments
To see the effect of using subgoals, we compared learning without subgoals to learning with one, two and
three subgoals. The locations of the subgoals and their regions are shown in Fig. 5. Each subgoal is defined
as an area of 10mm by 10mm, which the toe should reach. Since the subgoals usually do not lie on the
optimal path, we will also take a look at the influence of the placement of a single subgoal, by placing it at
different positions. Position a is the same as the single subgoal test explained above, while positions b, c
and d are further away from the optimal path.

Apart from the simulation tests, we also performed tests on the real robot, to see if the simulation results
match the results of the robot. Due to the long time real tests take, we only performed the tests for 0 and 2
subgoals, using HGE.

5 Results
The performance is defined as the inverse of the average number of steps it takes to reach the goal. Typi-
cally the performance increases drastically in a short time period, after which it slowly increases, as shown
in Fig. 6. Therefore, we stopped simulating after 50 minutes and do not know the optimal performance.
Consequently, we defined the end performance as the smoothed performance after 50 minutes. The fall time
is defined as the time it takes until the 3-sample moving average of the number of steps reached 10% of the
number of steps at the start of the learning. Each test is averaged over 100 runs. An example solution, found
by flat learning without subgoals, shows that the chosen subgoals most likely lie off the optimal path, see
Fig. 7 (lower line). On average, 6 ∗ 104 values were stored each run, with no significant dependency on the
number of subgoals.

5.1 Number of subgoals
We compared the efficacy of learning with subgoals using three methods: flat learning using an extra state
variable to indicate the current subgoal, MAXQ-Q(λ) (which adds regions), and MAXQ-Q(λ) with hierar-
chical greedy execution.

When using flat learning without regions in which the subgoals are allowed to be executed, the fall
time decreases slightly when using more subgoals (left bars in each group of Fig. 8a). However, the end
performance decreases dramatically (Fig. 8b). If we add regions using MAXQ-Q(λ) (middle bars), the
fall times become considerably smaller. For 2 subgoals, it is halved compared to 0 subgoals. The small
difference of fall time between 2 and 3 subgoals can be explained by the ease of learning the last part of the
task; once the robot managed to reach subgoal 2, the path to the end goal was quickly discovered. However,
the end performance is not much better than learning without regions. When using HGE (right bars), the fall
times are slightly better than just using regions, but the end performance is drastically increased, especially
when using more subgoals. By allowing the policy to “cut corners” (see Fig. 7, upper two lines), HGE
approaches, but not quite reaches, the end performance of learning without subgoals.

0 1 2 3
0

5

10

15

20

**
**

*

**
**

**

**
**

Number of subgoals

F
a

ll
ti
m

e
 (

m
in

)

Flat

With regions

With HGE

(a) Fall time. Except for flat learning, it is significantly de-
creased for more subgoals.

0 1 2 3
0

10

20

30

40

**
**

**

**
**

**

** **

**

Number of subgoals

S
te

p
s
 t

o
 g

o
a

l

Flat

With regions

With HGE

(b) Average steps to goal after 50 minutes. Performance de-
creases for more subgoals, but HGE reduces this effect.

Figure 8: Comparing different numbers of subgoals. Results differing significantly from 0 are marked (* for p < 0.05,
** for p < 0.01; n = 100).

a b c d
0

5

10

15

20

**

**

** **

Subgoal position

F
a

ll
ti
m

e
 (

m
in

)

Without HGE

With HGE

(a) Fall time. Position b learns significantly slower. This
position also has the greatest improvement when using HGE.
Position c learns faster.

a b c d
0

10

20

30

40

**
**

**
**

Subgoal position

S
te

p
s
 t

o
 g

o
a

l

Without HGE

With HGE

(b) Average steps to goal after 50 minutes. Positions b and d
perform worse than positions a and c.

Figure 9: Comparing subgoal positions, using MAXQ-Q(λ). Results differing significantly from position a are marked
(* for p < 0.05, ** for p < 0.01; n = 100).

5.2 Subgoal placement
The placement of subgoal 2 was tested with MAXQ-Q(λ), with and without HGE.

In Fig. 9a, we see that position b learns significantly slower than the original position. This may be
expected, as it lies far off the optimal path (see Fig. 7). However, positions c and d don’t show this effect.
As these are off to the right, it is possible that placing the subgoal further away from the step leads to less
collisions and therefore faster learning. If we look at Fig.9b, we see that the subgoals furthest away from the
optimal path (b and d) have the worst end performance.

HGE has a positive effect on the fall time and end performance of all positions, but from this data we
cannot draw conclusions about its dependence on the distance of the subgoal to the optimal path: the end
performance seems to be improved by roughly the same amount in all cases.

5.3 Tests on Leo
On the real robot, the tests were performed multiple times. After removing runs in which hardware problems
occurred, we could average the tests over 12 runs. The hardware problems that occurred were a broken
gearbox at the hip actuator and a toe force sensor that got stuck multiple times, which lead to the robot
receiving a reward for kicking its behind. Due to a software bug, the runs were aborted after 13 minutes of
learning time.

The learning curves of the simulation with the same settings as we used on the real robot, together with
the average learning curves of the real robot, are plotted in Fig. 10a and 10b. When comparing simulation
results with the results of the real robot, we can see that the learning curves without subgoals do not signif-
icantly differ. The curve of 2 subgoals, however, has a lower fall time in simulation than on the real robot.
This can be explained by observations we made when the robot was learning: we noticed how the robot was

Learning time (min)

S
te

p
s

to
 g

o
a

l

0 5 10 15 20
0

200

400

600

800

1000

1200

real

simulation

(a) Comparing real-world learning curve with a simulation for
flat learning, using the same settings. The results are not sig-
nificantly different.

Learning time (min)

S
te

p
s

to
 g

o
a

l

0 5 10 15 20
0

200

400

600

800

1000

1200

real

simulation

(b) Comparing real-world learning curve with a simulation for
2 subgoals with HGE, using the same settings. The real robot
learns slower than the simulation.

Figure 10: Learning curves with standard error bars at p = 0.05 (n = 12) verifying the simulation results using a real
robot. The real world trials exhibit a larger variation than the simulation.

shaking when nearly reaching a subgoal, indicating it was hard to reach the subgoal. We suspect this was
caused by sensor noise and backlash, which makes it harder to precisely reach the small subgoal area.

6 Conclusion
When learning motor skills with RL, the use of subgoals can lead to faster learning. However, this will
usually lead to a worse performance after convergence. A hierarchical framework like MAXQ adds a region
for each subgoal in which the subgoal is allowed to be executed. These regions decrease the state space,
and we showed that this speeds up the learning process. Another advantage of MAXQ is the possibility to
use HGE. In our experiments, this resulted in a policy that was much closer to the optimal policy. The real
robot also benefits from subgoals, but performed worse than the simulation due to the small subgoal areas.
We conclude that the use of subgoals is very useful for RL on a robot, as long as the subgoals lie reasonably
close to the optimal path and are not too small in comparison with the robot’s precision.

We believe that the performance may be further improved using the “all goals updating” method de-
scribed in [2]. With this method, not only the subtask which is in control gets Q updates, but other sub-
tasks are updated as well. In this way a subtask is learning while not in control, leading to faster conver-
gence; novel techniques that converge with off-policy learning under function approximation have made this
possible[5]. If the last subtask (the one that reaches the goal) is allowed to learn (and later execute) outside
of its region, it could even reach the same end performance as flat learning.

References
[1] T.G. Dietterich. The maxq method for hierarchical reinforcement learning. In Proc. 15th ICML, pages 118–126,

1998.
[2] T.G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition. Journal of

Artificial Intelligence Research, 13:227–303, 2000.
[3] Russel Smith et al. http://ode.org/. last visited in Oct 2010.
[4] A.D. Laud. Theory and application of reward shaping in reinforcement learning. PhD thesis, University of Illinois

at Urbana-Champaign, 2004.
[5] H. R. Maei, Cs. Szepesvari, S. Bhatnagar, and R. S. Sutton. Toward off-policy learning control with function

approximation. In Proc. 27th ICML, 2010.
[6] M.J. Mataric. Reward functions for accelerated learning. In Proc. 11th ICML, volume 189, 1994.
[7] A.Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to

reward shaping. In Proc. 16th ICML, pages 278–287, 1999.
[8] J. Randløv. Solving complex problems with reinforcement learning. PhD thesis, University of Copenhagen, 2001.
[9] Erik Schuitema. Hierarchical reinforcement learning. Master’s thesis, Delft University of Technology, 2006.

[10] Erik Schuitema, Martijn Wisse, Thijs Ramakers, and Pieter Jonker. The design of LEO: a 2D bipedal walking
robot for online autonomous reinforcement learning. In Proc. IROS, 2010.

[11] Ö. Şimşek, A.P. Wolfe, and A.G. Barto. Identifying useful subgoals in reinforcement learning by local graph
partitioning. In Proc. 22nd ICML, pages 816–823. ACM New York, NY, USA, 2005.

[12] S.P. Singh. Transfer of learning across compositions of sequential tasks. In Proc. 8th ICML, pages 348–352.
Morgan Kaufmann, 1991.

http://ode.org/

[13] S.P. Singh and R.S. Sutton. Reinforcement learning with replacing eligibility traces. Machine learning, 22(1):123–
158, 1996.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
[15] R.S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction in

reinforcement learning. Artificial intelligence, 112(1):181–211, 1999.
[16] C. Watkins. Learning from Delayed Rewards. Phd thesis, King’s College, 1989.

A The MAXQ-Q(λ) algorithm
In MAXQ, the value function of subtask i is defined as

Qi(s, a) = V (s, a) + Ci(s, a) (4)
where Ci(s, a) is the completion function for subtask i, defined as the expected discounted cumulative
reward of completing subtask i after invoking subtask a in state s. V (s, a) is the projected value function
for action a in state s, defined as

V (s, a) =

{
Qa(s, πi(s)) if a is a subtask
Vp(s, a) if a is primitive (5)

Since the actual policy of a subtask is based on rewards plus pseudo rewards, each subtask also has a pseudo
value function C̃i(s, a), which predicts the expected pseudo plus real reward. Thus, the greedy action of the
policy for subtask i is:

πi,greedy(s) = argmax
a′

[
C̃i(s, a

′) + V (s, a′)
]

(6)

The eligibility trace is stored in ei(s, a), which contains the discount factor for each state-action pair. A
subtask terminates when it reached its goal or when it got outside of its region. It also has to terminate when
its parent has to terminate. In all those cases Ti(s) is true. The pseudo code of the MAXQ-Q(λ) algorithm
for the tabular case, including HGE, can be found below.

1: function MAXQ-Q(λ)(MaxNode i, State s)
2: if i is a primitive MaxNode then
3: execute primitive action i, receive reward r, and observe result state s′

4: Vp(s, i)← (1− αi) · Vp(s, i) + αi · r
5: return 1
6: else
7: count← 0, initialize ei(s, a) = 0 for all s, a {Reset trace}
8: choose an action a according to the current policy πi(s)
9: while Ti(s) is false do

10: N ←MAXQ-Q(λ)(a,s) {Recursive call}
11: observe result state s′, reward r = Ri(s, a, s

′) and pseudo-reward r̃ = R̃i(s, a, s
′)

12: choose an action a′ according to the current policy πi(s′)
13: a∗ ← argmaxb[C̃i(s

′, b) + V (s′, b)]
14: if s′ is terminal and absorbing then
15: δ̃ ← γN [r + r̃]− C̃i(s, a), δ ← γNr − Ci(s, a)
16: else
17: δ̃ ← γN [r+ r̃+C̃i(s

′, a∗)+V (s′, a∗)]−C̃i(s, a), δ ← γN [r+Ci(s
′, a∗)+V (s′, a∗)]−Ci(s, a)

18: ei(s, a)← 1 {Replacing trace}
19: for all s, a with ei(s, a) > emin do {Limit trace length}
20: C̃i(s, a)← C̃i(s, a) + αiδ̃ei(s, a), Ci(s, a)← Ci(s, a) + αiδei(s, a)
21: if a′ = a∗ then {Greedy action}
22: ei(s, a)← γNλ(i)ei(s, a) {Decay trace}
23: else
24: ei(s, a)← 0 {Cut off trace on exploration}
25: count← count+N , s← s′; a← a′

26: if HGE and i 6= rootnode and rootnode has other subtasks to choose than i then
27: break
28: return count

	Introduction
	Related work
	Theory
	Hierarchical RL

	Experiment
	Setup
	Task
	Experiments

	Results
	Number of subgoals
	Subgoal placement
	Tests on Leo

	Conclusion
	The MAXQ-Q() algorithm

