
Accelerating Reinforcement Learning on a Robot by 

Using Subgoals in a Hierarchical Framework
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Towards optimal end performance
•	All goals updating
•	Subtasks can learn while not in control
•	Last subtask eventually learns entire 
problem
•	Optimal end performance possible
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Humanoid robots
•	Hard to model, hard to control
•	Use reinforcement learning
•	Naive learning is slow
•	Add prior knowledge in the form of sub-
goals

Hierarchical reinforcement learning
•	MAXQ framework
•	Extended to MAXQ-Q(l) with tile coding
•	Subtasks, each reaching a subgoal
•	Execute only in a certain state space re-
gion
•	Root task selects subtasks

Hierarchical greedy execution
•	Root task can interrupt subtasks
•	Beneficial	when	subgoals	do	not	lie	on	op-
timal path
•	“Cutting corners”

Start
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Experiment
•	Stair step-up
•	Goal reward, time penalty
•	Subgoals near path to goal

LEO
•	Autonomous 2d bipedal robot
•	7 degrees of freedom
•	Robust

Results
•	More subgoals increase learning speed
•	Reduced end performance
•	Partially cancelled out by HGE
•	Simulation and real tests agree for 0 sub-
goals
•	Real tests slower for 2 subgoals
•	Small goal area
•	Sensor noise and backlash
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