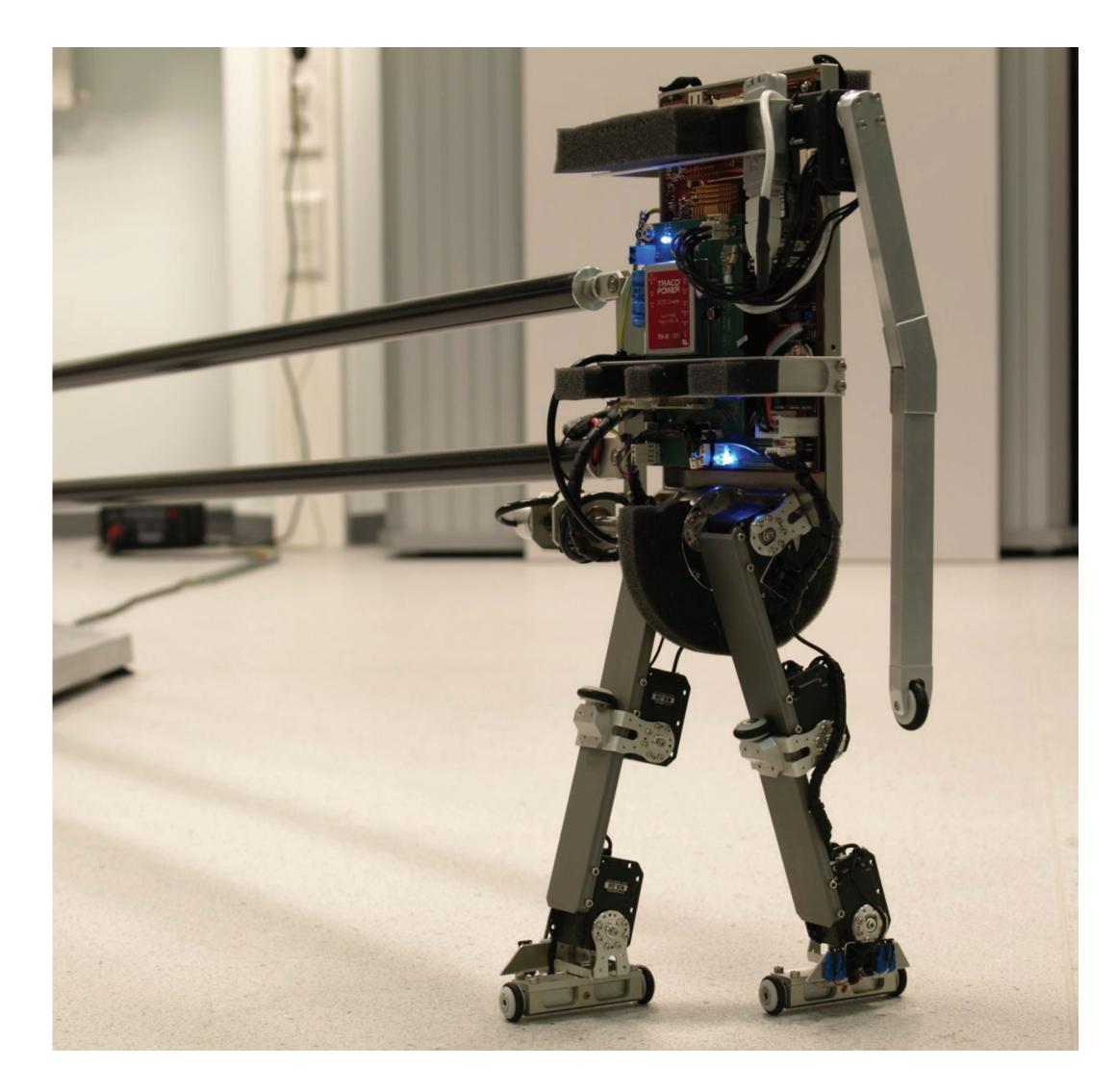
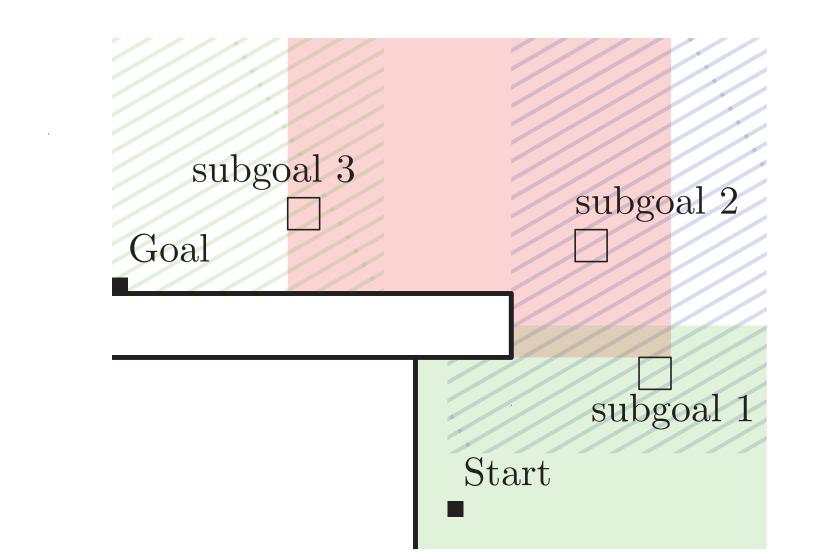
Accelerating Reinforcement Learning on a Robot by Using Subgoals in a Hierarchical Framework

Erik Schuitema Pieter Jonker Wouter Caarls Bart van Vliet



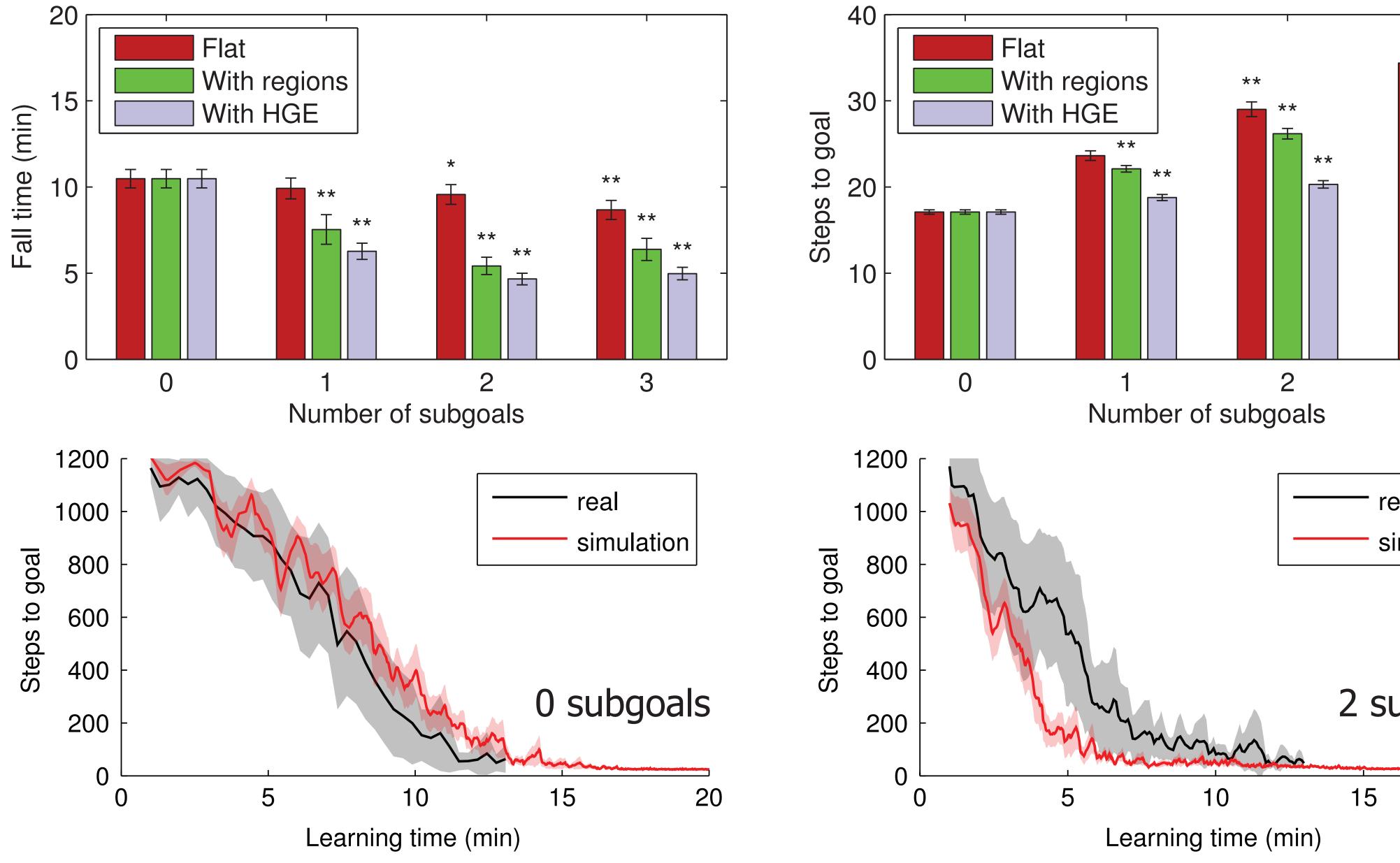
Humanoid robots

- Hard to model, hard to control
- Use reinforcement learning
- Naive learning is slow
- Add prior knowledge in the form of subgoals



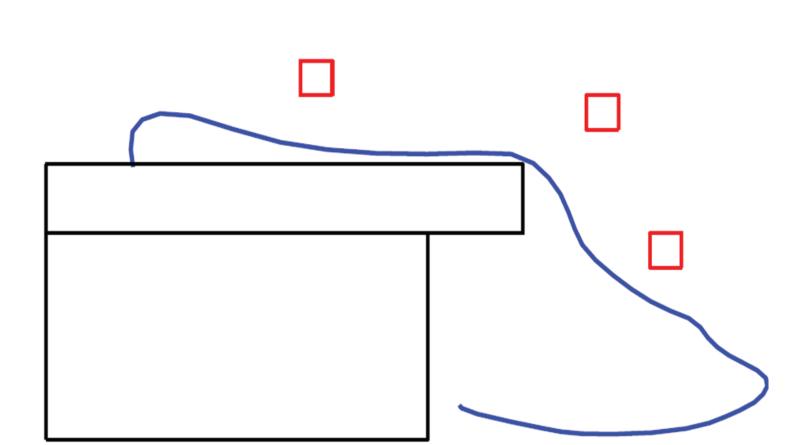
LEO

- Autonomous 2d bipedal robot
- 7 degrees of freedom
- Robust



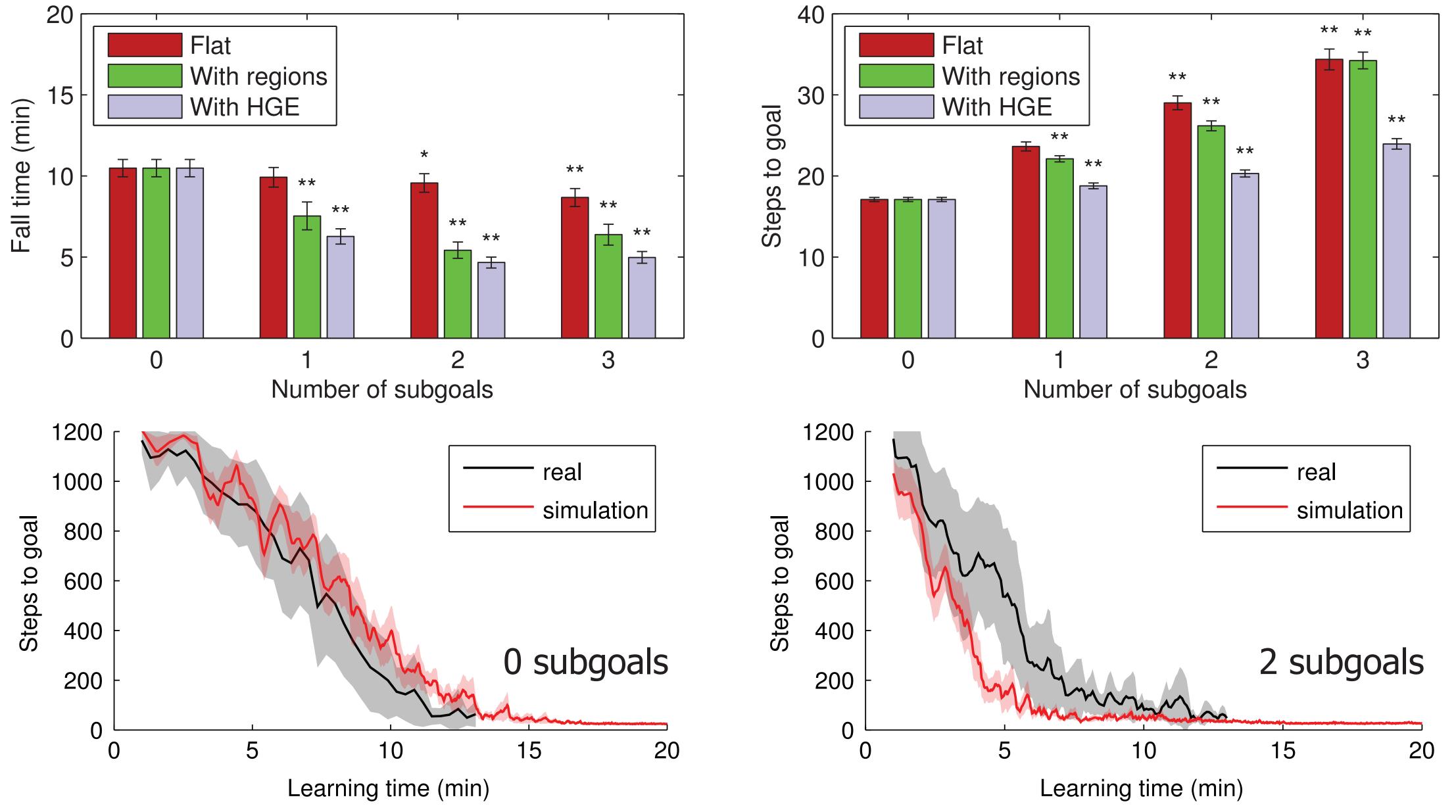
Hierarchical reinforcement learning

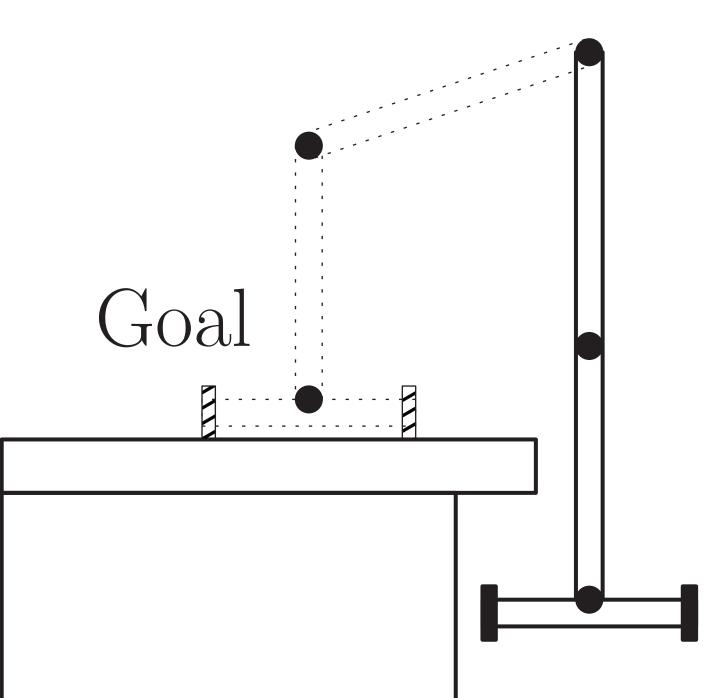
- MAXQ framework
 - Extended to MAXQ-Q(λ) with tile coding
- Subtasks, each reaching a subgoal
- Execute only in a certain state space region
- Root task selects subtasks



Hierarchical greedy execution

- Root task can interrupt subtasks
- Beneficial when subgoals do not lie on optimal path
- "Cutting corners"

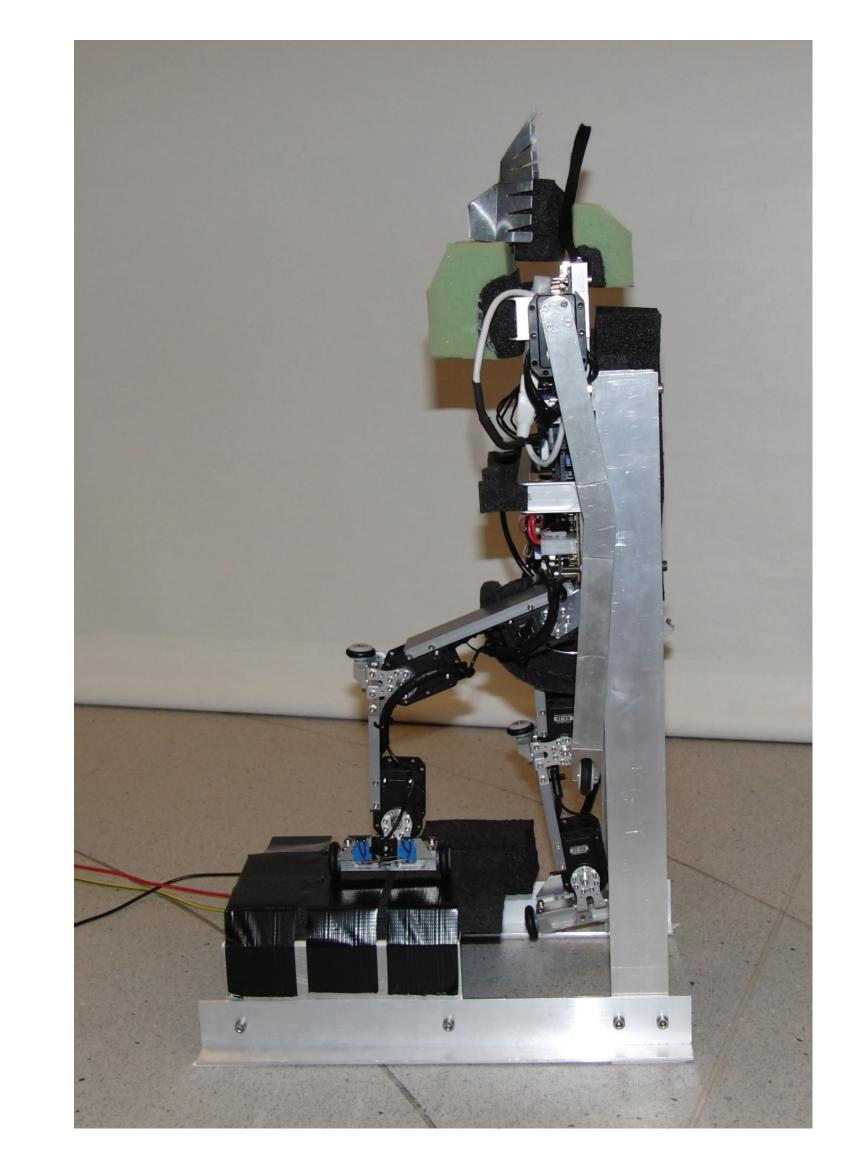




Start

Experiment

• Stair step-up • Goal reward, time penalty • Subgoals near path to goal



Results

 More subgoals increase learning speed • Reduced end performance

Towards optimal end performance

- All goals updating
- Partially cancelled out by HGE
- Simulation and real tests agree for 0 subgoals
- Real tests slower for 2 subgoals
 - Small goal area
 - Sensor noise and backlash

• Subtasks can learn while not in control

- Last subtask eventually learns entire problem
- Optimal end performance possible

Challenge the future