
Comparison of Extremum Seeking Control Algorithms for Robotic

Applications

Berk Calli, Wouter Caarls, Pieter Jonker, Martijn Wisse

Abstract— The purpose of this paper is to help engineers
and researches to choose among the extremum seeking con-
trol (ESC) techniques for robotic applications such as object
grasping, active object recognition and viewpoint optimization.
These techniques are categorized into five main groups: Sliding
mode ESC, neural network ESC, approximation based ESC,
perturbation based ESC and adaptive ESC. These groups are
explained briefly by stressing their working principles and the
effect of the parameters. Then, the techniques are compared
with respect to their robustness to noise and system dynamics
by simulations. In conclusion, we propose the usage of the
approximation based methods when the noise level is negligible.
When noise is present, the neural network based optimizers are
a better choice thanks to their hysteresis functions. However, if
the system has both high noise and dynamic effects, then the
perturbation based method is preferable since large motions
provide robustness to noise and smooth references generated by
the algorithm are less likely to cause instability. An application
example is also given on texture density maximization.

I. INTRODUCTION

Extremum seeking control (ESC) is a well developed field

which addresses the problem of objective value optimization

when the objective function, its gradient and optimum value

are unknown. Some widely known applications of ESC are

ignition time selection for combustion engines [1], bioreactor

optimization [2] and anti-lock braking system control [3]. A

large list of applications can be found in [4].

Besides these applications, ESC algorithms have great

potential in robotics. Especially for robots that operate in

unknown/dynamic environments (i.e. homes, offices, elderly

care centers), the optimum values of the objective variables

of a task are unknown because of the unknown state/effect of

the environment. In these cases, online optimization tools like

ESC can be utilized in order to optimize these task variables.

A very recent example of ESC in the robotics field is

proposed in [5]. In this work, an eye in hand system is

used and the saliency (a measure of interest) of the view

of the camera is maximized by providing references to the

robot arm. Here, since the saliency map of the environment

is unknown, the objective function cannot be used for the

optimization purposes. However, the objective value can be

calculated for each view. The ESC framework enables online

optimization for such a task. Another example is presented

in [6] and [7] where ESC is implemented for non-holonomic

systems in order to seek the source of a signal.

Our interest in ESC algorithms stems from our vision

based grasping research [8]. One challenge of this field is

to develop algorithms that can calculate the positions of

stable grasping points on the object. This can be achieved by

constructing an objective function based on the object model

and running an optimization algorithm which searches for

the optimum grasping points. However, we are specifically

working on grasping unknown objects, which automatically

implies that the model of the object is unknown. On the

other hand, using an eye in hand system, an objective value

can be calculated for each image of the object. In this

case, an ESC algorithm can be utilized in order to run an

online optimization for grasping purposes, so that the object

modeling process can be skipped and a faster grasping can be

achieved. With a very similar formulation, these algorithms

can also be used to increase the performance of the object

recognition systems by altering the viewpoint of the object

in order to see surfaces with high texture density.

In this paper, we analyze the ESC algorithms for robotics

applications. The robotic systems can be characterized by

their nonlinear dynamics and sensor noise. The algorithm

should be able to perform well under these circumstances.

The performance of the algorithms are analyzed by their tran-

sient response using the rise time and settling time measures.

The smoothness of the velocity references generated by the

algorithms is also another criterion. Moreover, since most

robots can operate in multiple dimensions, the performance

of the algorithm in the multivariate case is also crucial.

For this case, the trajectories generated by the algorithms

are presented in order to analyze the motion in the search

space, and a numerical comparison is given by presenting

the total distance traveled until 95% of the optimum value

is reached. In most robotic applications, the objective value

can be measured continuously. For example, in the imple-

mentation of [5], the saliency value can be computed for

each image acquired from the camera. Therefore, in this

paper we specifically concentrate on analog ESC algorithms,

which utilize the objective value continuously, and exclude

algorithms like the simplex method [9].

Two other comparison papers on ESC can be found in [10]

and [11]. These papers present a detailed comparisons of two

ESC methods whereas we focus on robotic applications and

present a larger set. Also, a good history study of the ESC

can be found in [12].

The analog extremum seeking control algorithms can be

categorized into five groups: Sliding mode ESC, neural

network ESC, approximation based ESC, perturbation based

ESC, adaptive ESC. The next section summarizes these ESC

methods. The third section gives comparative simulation

results. The fourth section presents an analysis based on the

simulation results. In the fifth section, experimental results on

texture density maximization is presented. Finally, in section

six the paper is concluded with a summary.



II. ANALOG EXTREMUM SEEKING CONTROL METHODS

The problem of ESC is formalized as follows: For a given

system

y = f (x) (1)

where f (x) is the unknown objective function, x ∈ Rn is the

state vector with dimension n, and y is the objective value

that can be measured continuously, an analog extremum

seeking control algorithm searches the state space for the

state vector x that corresponds to the optimum (most of the

time local optimum) of the objective value. To achieve this

goal, the following algorithms are presented in the literature

(all the derivations below are for the minimization of the

objective value):

A. Sliding mode ESC

In early 70’s, Korovin and Utkin proposed sliding mode

ESC [13], [14]. This method is based on a driving signal.

Unlike conventional control problems, the reference value is

unknown in the ESC framework since the optimum value

of the objective function is unknown. The driving signal in

sliding mode ESC functions as a reference generator for the

system, and it is designed to be monotonically decreasing

when searching for the local minimum. The ESC rule is then

formulated such that the system tracks this driving signal.

As in the most sliding mode systems, the tracking of

the signal relies on the high frequency chattering around

the signal’s value. This behavior makes this ESC algorithm

unsuitable for robotic applications. Preserving the main idea,

Yu and Ozguner [15] altered this method in order to prevent

the high frequency chattering. This type of sliding mode ESC

is analyzed in this paper.

Define a monotonically decreasing driving signal g(t)

whose derivative is given as

ġ(t) =−ρ (2)

where ρ is a positive constant. The error between objective

value and the driving signal is

e = y− g(t) (3)

The output of the ESC algorithm is designed as

u = sign(sin(πe/α)) (4)

where α is a positive constant. This output is fed to the

system as velocity reference with a gain k which determines

the convergence rate:

ẋr = ku (5)

The reason of using a sine inside signum function is the

following: since the objective function is unknown, the ESC

algorithm does not know the direction in which it should lead

the system in order to minimize the objective value. If the

system goes in a wrong direction, the error will increase. This

rise will continue until the value of the sine function changes

sign. Then, the velocity reference will also change direction,

and the system will start following the driving input. The

bound on the error that is allowed by the system can be

tuned by the parameter α . If the system is slower or faster

than the driving signal, then this will cause chattering and

the frequency of this chattering can be remarkably decreased

by increasing the α parameter. When the optimum value is

reached, the system oscillates within the allowed error bound.

This method is implemented for an anti-lock braking system

in [15].

Multivariate Extension: Although it is quite straightfor-

ward to implement sliding mode ESC in the unidimensional

case, the multidimensional implementation is problematic.

For the algorithm in [13], there are some propositions on

multivariate extensions, but to the best of our knowledge

there is no successful implementation of sliding mode ESC

in the multivariate case. Thus, in Section III we will only

analyze the performance of the sliding mode algorithm for

a single dimension.

B. Neural network ESC

Neural network ESC [16], [17] is based on a minimum

peak detector and two switching functions with hysteresis.

Just like the driving signal concept in sliding mode ESC,

neural network ESC also has a reference generator. One

component of this reference is the minimum peak detector,

and it is designed to be monotonically decreasing as follows:

ẏp =

{

0 (yp ≤ y)

−M (yp > y)
(6)

where yp is the value of the minimum peak detector, and M

is a parameter that defines the speed of convergence of y p

to y, when y is smaller. This speed should be higher than

the rate of change of the objective value in order to maintain

convergence:

|ẏ|< M (7)

The second component of the reference is provided by the

switching function W . This switch starts functioning after

the optimum value is reached, and it will be explained

shortly. The reference is formed by the addition of the two

components:

yr = yp + yw (8)

The error function is defined as the difference between the

objective value and the reference value:

e = yr − y (9)

The control law u is another switching function with hys-

teresis and is designed as:

u =











−A e <−δ

A e > δ

[previous state] otherwise

(10)

Here, A is a constant that specifies the magnitude of the

velocity reference, and δ is the hysteresis width. If the

direction of the system makes the objective value converge to

the optimum value, then this direction is kept. Otherwise, the

error will increase, and when it is greater than the hysteresis,

the direction will be reversed. However, this function can not



stop the system when the optimum value is reached. The role

of the yw signal begins here and it alters the reference value.

The derivative of the yw signal is defined as

ẏw =











0 e > ∆

B e <−∆

[previous state] otherwise

(11)

where B is a positive constant. The value of the second

hysteresis width ∆ should be greater than δ , since yw should

start functioning after the optimum value is reached:

∆ > δ (12)

The control signal u is fed to the systems as velocity input:

ẋr = u (13)

When the optimum value is reached, the system oscillates

with an error under ∆.

Multivariate Extension: In order to extend the neural

network based algorithm to the multivariate case, the usage

of a coordinate descent algorithm is proposed [17]. The main

logic of this algorithm is to descritize the search directions

and to minimize in one direction at a time. To achieve this,

the control law u is implemented with 2n − 1 switching

functions with different hysteresis values where n is the

dimensionality of the state. The direction of the search is

changed whenever a hysteresis threshold is reached in that

direction and this brings the following constraint to the

hysteresis widths:

δ1 < δ2 < ... < δ2n−1 < ∆ (14)

C. Approximation based ESC

When the objective function to be optimized is unknown,

one natural choice is to derive a local representation of this

function based on the past data. This representation can

then be used with either a gradient or a non-gradient based

approach. For feedback linearizable systems, a trust region

based algorithm is designed in [18]. The main idea of the

trust region algorithm is the following: First a well-poised

approximation set is formed, and a local approximation of

the objective function f̂ (x) is obtained. Since this is only

a local approximation, it can only be trusted in a local

region. An initial value ∆0 is set for this trust region, and

the approximated objective function is optimized within this

region. Let’s say the system is at xk, and the optimum value

in this local region is found at xk + pk. The system is led to

this new set point and whenever the set point is reached the

following ratio is calculated in order to measure how good

the approximation of the objective function was:

ρk =
f (xk)− f (xk + p)

f̂ (xk)− f̂ (xk + p)
(15)

If ρk is close to 1, this signifies a good approximation, and

trust region radius can be increased, otherwise it should be

decreased. This update rule is as follows:

∆k+1 =











[∆k,∞], ρk ≥ η2

[γ2∆k,∆k] ρk ∈ [η1,η2)

[γ1∆k,γ2∆k], ρk < η1

(16)

where 0<η1 ≤η2 < 1 and 0< γ1 ≤ γ2 ≤ 1. For more detailed

information about the trust region methods, see [19].

Considering [18], the advantage of using feedback lin-

earizable systems is to be able to ensure the convergence

of the system to the set points and be able to estimate the

regulation time, so that the time when xk + pk is reached is

known approximately. Since we don’t want to impose any

constraints on the system in this paper, we used the error

between xk + pk and x in order to detect when the reference

is reached.

Alternatively, since the gradient of the objective function

can be estimated locally by the derivative of the approxi-

mated objective function, a line search algorithm such as

gradient descent can also be utilized as in [4]. In this case,

the velocity reference can be generated as follows:

ẋr =−k
d f̂ (x(k))

dx
(17)

where k is a positive gain. The simulation results are pre-

sented for both methods in Section III.

Multivariate Extension: For the multivariate case, multi-

variate approximation techniques can be used to approximate

the objective function locally. We used bilinear approxi-

mation in this paper for two dimensions. The rest of the

derivation is the same as the unidimensional case.

D. Perturbation based ESC

It would be safe to say that perturbation based ESC

framework is the most popular method in the literature.

These types of methods [20], [21], [22], [23], [24] use an

external perturbation signal and modulation theory to find

the optimum value. The most commonly used perturbation

signal is the sine wave. The ESC algorithm sends the sine

wave to the system as position reference together with an

adaptation input:

x = a · sin(ωt)+ x̂ (18)

with some amplitude a and modulation frequency ω . The

adaptation signal x̂ shifts the sine wave towards the gradient

direction. A way of calculating this signal is the following

procedure: Combining the adaptation signal with the sine

signal as in (18) is the modulation phase of the algorithm.

The response of the system to this signal is measured in

the objective value y. This output is filtered by a high pass

filter to eliminate the DC component and demodulated by

the same sine signal to extract the gradient direction.

ξ = y

(

s

s+ h

)

(a · sin(ωt)) (19)



This information is utilized in order to calculate the shift

in the sine signal towards the gradient. This part of the

algorithm is called the adaptation law.

x̂ =−ξ
k

s
(20)

Here, k is a positive constant that specifies the adaptation

speed. The algorithm has several variations. Some of them

include applying a low pass filter to ξ before using it

in the update rule since only the DC component of the

demodulated signal is needed for gradient calculation. In

some other variations, the adaptation law is combined with

a compensator which relaxes the design constraints on the

parameter k [25].

The amplitude and the frequency of the sine wave signal

and the cutoff frequencies of the filters are important design

parameters. A detailed study of how the design of the per-

turbation signal affects the performance of the ESC system

is presented in [26]. Further analysis with variable gains and

with the presence of noise in the measurement channel is pre-

sented in [27]. The applications of perturbation based ESC

on a bioprocess, fluid flow control, magnetically suspended

flywheel and online parameter tuning for combustion timing

can be found in [28], [29], [30] and [1] respectively. Also,

an application for non-holonomic systems is given in [31]

where the algorithm is enhanced for being able to alter the

trajectory of the robot.

Multidimensional Extension: Extending this method to the

multidimensional case is done by assigning a sine wave to

every input channel with some phase shifts. For example,

in two dimensional case, if the phase shift between the sine

waves of the first channel and the second channel is π/2,

then the system moves with circles in the task space, and the

center of the circle is shifted by the adaptation input which is

calculated by the same modulation and demodulation steps.

E. Adaptive ESC

Adaptive ESC [32], [33] uses adaptive control schemes

for the online optimization. Unlike the approximation based

methods, the adaptive ESC approximates the objective func-

tion globally. This algorithm necessitates the type of the

objective function to be known. The adaptive ESC implemen-

tations for Hammerstein and Wiener type nonlinear objective

functions are given in [33] and [34]. In this paper, we do not

want to impose any constraints on the objective function,

so we will not analyze this method. However, we find it

important to note that, if the form of the objective function is

known, then this method provides efficient results by quickly

identifying the extremum, and driving the system towards it.

III. SIMULATIONS

The performance of the above mentioned ESC algorithms

are analyzed by simulations in both unidimensional and mul-

tidimensional case. All the Matlab files of these simulations

can be found at 1.

1http://www.dbl.tudelft.nl/over-de-faculteit/afdelingen/biomechanical-
engineering/onderzoek/dbl-delft-biorobotics-lab/software/

A. Unidimensional Simulations:

In this subsection, the robustness and general characteris-

tics of the ESC algorithms are examined for the unidimen-

sional case. The simulations are conducted for the following

cases:

1) System without dynamics and noise

2) System with noise without dynamics

3) System with dynamics without noise

For the third case, the algorithm is analyzed by using a model

with the dynamics of a six DOF robot manipulator provided

by a Matlab robotics toolbox [35]. The optimization problem

is defined in the task space and the velocity references that

are supplied by the ESC algorithms are sent to an inner

velocity control loop.

The objective function is specified as a Gaussian based

function where µ and σ signify the mean and the variance

respectively:

f (x) = 2− e
−1
2

(x−µ)2

σ .2 (21)

Here, the parameters µ and σ are set to -0.4 and 0.27. The

system starts at x = 0, and the objective value measured

at that state is y = 2. The ESC algorithms search for the

minimum value of this function which is y = 1.

The maximum velocity of the systems are limited to 1m/s.

The algorithms are tuned for each separate case considering

fast convergence, low chattering, and the steady state error

is aimed to be kept below %5. For all the algorithms,

objective value is plotted with respect to time. These plots are

evaluated using rise time and settling time measures. Also,

the references generated by these algorithms are analyzed

considering smoothness.

1) Simulations without noise and dynamics: Results for

the simulations without noise and dynamics are presented in

Figure 1. It can be seen that the sliding mode ESC and the

neural network ESC performs very similarly. They both lead

the system to the wrong direction for a brief amount of time.

Then, due to the increasing error between the driving signal

and the measurement, both algorithms change the sign of the

velocity reference by the mechanisms explained in Section

II, and the system starts to approach to the objective value

with a constant velocity. The rise time and the settling time

of the sliding mode ESC are ≈ 0.31 and ≈ 0.44 seconds.

These values are ≈ 0.31 and ≈ 0.37 seconds for the neural

network controller. When the optimum value is reached, the

systems oscillate around the optimum value.

Among the approximation based ESC methods, the results

of the trust region and gradient based methods are given with

the dashed red and blue lines in Figure 1 respectively. For the

trust region algorithm, each peak at the generated velocity

corresponds to a new set point. It can be seen that the thrust

region width first increases at the almost linear region of the

Gaussian function since the local approximations hold for

larger regions. However, near the optimum value, the shape

of the Gaussian function changes more rapidly which causes

a decrease of the width. The objective value is reached with
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Fig. 1. Simulation results of the analog ESC methods without noise and dynamics in unidimensional case.

a rise time of ≈ 1.39 seconds, a settling time of ≈ 1.46

seconds.

On the other hand, the gradient based method generates a

very smooth velocity reference. This feature is clearly better

than the previous algorithms. The rise time is measured as

≈ 0.4 seconds, and the settling time is ≈ 0.42 seconds. It is

clear that the performance of the gradient based method is

better than the trust region algorithm considering both the

speed of convergence and reference smoothness. Thus, for

the rest of this section, only the results with gradient based

method will be presented.

The perturbation based ESC algorithm provides sinusoidal

velocity references to the system. The system converges to

the optimum value while oscillating at the same time with

smooth references. When the optimum value is reached,

the amplitude of the oscillations decreases gradually. This

algorithm necessitates a larger motion and this makes rise

time and settling time increase drastically. These values are

measured as 2.15 and 2.35 seconds respectively.

2) Simulations with noise without dynamics: The simu-

lations are run for three different measurement noise ampli-

tudes: 0.05, 0.1 and 0.2. The noise is uniformly distributed.

These results are presented in Figure 2. For the sliding mode

ESC, an oscillation is observed in the transient response.

The rise time and settling time are increased to ≈ 0.58

and ≈ 0.88 respectively. However, more importantly, high

frequency oscillations are observed at the direction change

points. The amount of oscillations is increased as the noise

amplitude gets higher. These oscillations are prevented by the

hysteresis mechanisms of the neural network ESC. For this

method only small irregularities are observed at the steady

state oscillations. Other than that, its performance is very

close to the case without noise.

For the approximation based ESC, more data points are

used for interpolation than in the noise-free case in order to

cope with noise. The motion until t = 0.5 is for collecting

these necessary data. This motion caused an increase in the

settling time which is measured as ≈ 1.08. Additionally,

although the objective value converges smoothly to the

optimum value, the smoothness of the velocity reference is

effected negatively. This causes the system to diverge from

the optimum value, and it gets worse when the noise is

increased.

The perturbation based ESC stays unaffected for all three

noise levels. It provides the same performance as the noise-

free case.

3) Simulations with dynamics without noise: The results

with dynamics are given in Figure 3. For the sliding mode

ESC, the convergence to the optimum value is maintained

with an oscillation in the transient. The rise time and settling

time values are measured as ≈ 0.65 and ≈ 0.88 seconds

respectively. There is also a risk of drift in the steady state

which is discussed in Section IV.

For the neural network ESC method, higher amplitude

oscillations are observed in the steady state. The reason is

that, because of the dynamics of the system, the system does

not stop immediately after the first threshold is exceeded

which causes the system to exceed the second threshold as

well. The rise time and settling time values are again very

close to the sliding mode ESC; the values are ≈ 0.57 and

≈ 0.8 seconds respectively

Approximation based ESC is quite robust to the robot

dynamics. Since the approximation phase uses the current

state values of the robot, it is not affected by the dynamics.

The rise time and settling time values are smaller than the

previous methods with values ≈ 0.52 and ≈ 0.58 seconds.

The perturbation based method is again very robust to the

robot dynamics and performs very close to the dynamics free

cases.

B. Two dimensional Simulations:

In this section, the motion generated by the algorithms in

the two dimensional case is analyzed. No noise or system
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Fig. 2. The simulation results with three different noise levels. The blue, green are red dashed lines are the results with noise amplitudes 0.05, 0.1, and
0.2 respectively.
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Fig. 3. The simulation results with a dynamic model of a six DOF robot.

dynamics are used (like in Subsection III-A.1) in order

to examine the motion characteristics separately. The total

distance traveled until 95% of the optimum value is reached

is also given for numerical comparison. Since there is no

extension of sliding mode ESC to the multivariate case, only

the other algorithms are considered. The objective function

is defined as a multivariate Gaussian based function:

y = 2− e−0.5(x−µ)T Σ−1(x−µ) (22)

Here, the mean vector µ and the covariance matrix Σ are

selected as

(

0.5
0.2

)

and

(

0.15 0

0 0.15

)

respectively.

The results are presented in Figure 4. For neural network

based ESC, the descritization of the search space can be

seen clearly. The total distance traveled is ≈ 0.81 meters. For

approximation based ESC, it can be seen that the objective

value is reached following an almost optimal route with a

total distance of ≈ 0.41. The result for perturbation based

ESC clearly shows the circular motion in task space with a

traveled distance of ≈ 6.73 meters.

IV. ANALYSIS

Effectively, sliding mode ESC and neural network ESC

functions almost the same when there is no noise and dynam-

ics effects. However, for sliding mode ESC, there should be

a balance between ġ(t) and
dy
dx

in order to avoid chattering.

In neural network ESC, the driving input moves together

with the objective value. This makes the parameter tuning of

the neural network method easier. The approximation based

method generates very smooth references for the system, and
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Fig. 4. The simulation results of neural network ESC (blue) the approxi-
mation based ESC (green), and the perturbation based ESC (red) for the two
dimensional case: The algorithms lead the system to the minimum value of
the Gaussian like function.

looks like the best choice for the systems without noise. It

does not oscillate around the optimum value and has a very

small steady state error. The perturbation based method looks

like overkill for systems with negligible noise and dynamics.

The rise time, settling time and the total distance results are

all significantly larger than the other methods.

It is seen that the noise in the measurement channel

affects all the methods except the perturbation based one,

however the settling time of this method is still larger. The

neural network ESC also shows robustness by its hysteresis

mechanism except for the small steady state irregularity, and

it shows the best performance in settling time. In the sliding

mode based approach, the transient response is also affected,

but high frequency oscillations when the velocity reference

is changing are a greater problem. The performance of the

approximation based method also drops due to the degrada-

tion of smoothness of the generated velocity reference, and

higher settling time is observed.

It is seen that sliding mode ESC and neural network ESC

show a performance decline due to the dynamics effects.

However, for sliding mode ESC there is a potential risk of

drift of the system in steady state. The reason of this is the

growth of the driving signal. Actually, due to the design of

the driving signal in (2), it increases all the time, even after

the optimum value is reached. Therefore, the error between

the driving signal and the objective value grows, and the

error signal looses its meaning for the control law in (4);

it only causes oscillations as the sine function changes sign

with the growing error. In order to solve this problem, the

driving input can be designed similar to the one in [14]

so that if the objective value is unable to track the driving

signal, the driving signal takes some steps back. Another

option may be to use some heuristics. If the dynamic effects

are not too large, the neural network ESC method is still

usable. However, as a result of the smooth velocity reference

generation, the approximation based method shows the best

performance. Perturbation based ESC again presents a very

robust result under the dynamic effects too. Considering its

performance in for all of the cases, this method is preferable

Fig. 5. Snapshots from the experiment. The robot starts with the initial
image on the left. The neural network ESC algorithm provides references
in order to maximize the texture density and the snapshot on the right is
achieved at the final position.

due to the smooth references and when consistency is an

issue.

Among the algorithms that have been extended to the

multivariate case in the literature, the approximation based

method looks the best. However, it should be noted that,

in the presence of noise, the performance of the algorithm

will be degraded as in Section III-A. The neural network

ESC presents a reasonable result with a good convergence

rate. On the other hand, the perturbation based algorithm

makes the system travel long distances. All these results are

presented in Table I.

V. EXPERIMENTAL RESULTS

In this section, we show that ESC works for our applica-

tion area by giving an indicative example. A six DOF UR5

type Universal Robots arm is used with a camera mounted

on the tooltip. In this experiment, the goal is to change the

viewpoint of an object in order to maximize textured surface.

This kind of system can be used to increase the success rate

of an object recognition system. The texture density value is

calculated by counting the edge density over a region, and

it is subtracted from the maximum possible value.

The velocity references of the ESC algorithm are fed to

the translation motions in the x and y directions of the task

space. The orientations around the x and y axes of the tooltip

are controlled in order to keep the object always at the

center of the image. The translation in the z direction and

the orientation around the z axis are not controlled. Based

on our analysis in Section III, we chose to use the neural

network ESC algorithm since we have noise on the texture

density calculation and low dynamics effects.

The initial and final views of the object are given in

Figure 5. The objective value with respect to time is given

in Figure 6. The ESC algorithm successfully minimizes the

objective value and leads the robot to a much better view

point for recognition purposes, indicating that the algorithm

is indeed a good fit to our experimental conditions. In these

experiments, since the workspace of the robot is limited, we

needed to introduce the workspace constraints to the ESC

problem. We have noticed that, this can be easily achieved

in the neural network ESC by forcing a direction change

(just like it happens when the threshold of that direction is

exceeded) whenever the workspace borders are reached.



Effect of noise Effect of system dynamics Smooth References Multivariate Extension / Traveled distance

Sliding mode ESC Distortion in transient, Minor distortion at No No

high frequency oscilation in transient, risk of drift

steady state

Neural Network ESC Minor irregularities in steady state Minor distortion in the No Yes / medium

steady state

Approximation based ESC Distortion at the generated velocity, Robust Yes, Yes / low, very close to optimum

Performance fall at the steady state if noise is negligible

Perturbation based ESC Robust Robust Yes Yes / large

TABLE I

SUMMARY OF THE ANALYSIS OF THE ANALOG ESC ALGORITHMS.
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Fig. 6. Objective value plot for the experiment.

VI. CONCLUSION

In this paper, we categorized and summarized a number

of analog extremum seeking controllers. They were analyzed

for their usability in robotic applications. For the systems

with negligible noise and dynamic effects, approximation

based methods look like the best option. When noise is

present, neural network ESC gives robust and efficient results

compared to the other algorithms. Under dynamic effects,

the approximation based method presents efficient and robust

results. On the other hand, it is observed that, the perturbation

based method gives very consistent results with smooth

references under both high noise and dynamic effects.
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