
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000 1

Parallel On-Line Temporal Difference Learning for
Motor Control

Wouter Caarls, Member, IEEE, and Erik Schuitema

Abstract—Temporal difference (TD) learning, a key concept in
reinforcement learning, is a popular method for solving simulated
control problems. However, in real systems this method is often
avoided in favor of policy search methods because of its long
learning time. But policy search suffers from its own drawbacks,
such as the necessity of informed policy parameterization and
initialization. In this paper, we show that temporal difference
learning can work effectively in real robotic systems as well, using
parallel model learning and planning. Using locally weighted
linear regression and trajectory sampled planning with 14
concurrent threads, we can achieve a speedup of almost two
orders of magnitude over regular TD control on simulated control
benchmarks. For a real-world pendulum swing-up task and a
two-link manipulator movement task, we report a speedup of 20x-
60x, with a real-time learning speed of less than half a minute.
The results are competitive with state-of-the-art policy search.

Index Terms—reinforcement learning, motion control, predic-
tive models, parallel programming, real-time systems

I. INTRODUCTION

REINFORCEMENT learning [1] has a long history of be-
ing applied to motor control problems, although mostly

in simulation. Actual real-world applications suffer from many
problems, such as noise, control delay, wear and tear, and
timing constraints [2]. However, the most pressing problem is
the huge amount of experience required to find a good control
policy. As the collection of experience cannot be sped up, it
is necessary to reduce the required amount.

A popular solution has been to increase the amount of
prior knowledge by searching in a reduced space of param-
eterized control policies [3]. This has proven very effective,
leading to quick learning and smooth control, but the required
knowledge reduces the generalizability and autonomy of the
learning system [4]. Value-based methods such as temporal
difference (TD) learning require less prior knowledge, but
have the aforementioned problem of requiring many samples,

Manuscript received December 9, 2014; revised March 9, 2015 and May
21, 2015; accepted May 31, 2015. Date of publication Xxxx 00, 2015; date
of current version Xxxx 00, 2015. This work was supported in part by the
European Union within the 7th Framework Program under Grant Agreement
No. 611909, and in part by CAPES, Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior – Brasil, in the context of the Science without
Borders program – CsF.

W. Caarls is with the Postgraduate Program in Informatics (DCC/NCE),
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil and the Depart-
ment of Biomechanical Engineering, Delft University of Technology, Delft,
The Netherlands (e-mail: wouter@caarls.org)

E. Schuitema is with ESSD Engineering Software, Delft, The Netherlands
(e-mail: erik@essd.nl)

Digital Object Identifier 00.000/TNNLS.0000.0000000

especially in continuous state spaces. We show that a multi-
threaded implementation of the DYNA framework [5] for on-
line model learning and planning dramatically increases the
sample efficiency of TD control. By doing mental rehearsal
on the learned model we can quickly estimate a value function
based on just a few samples, enabling the use of TD methods
to control real dynamical systems. Our main contribution
is doing this in parallel, in a continuous state space using
function approximation and a model suitable for motor control.
Parallel processing is needed because the number of cores is
the only vector along which computing power still increases
according to Moore’s law [6].

The paper is organized as follows: we start with reviewing
related work and relevant methods, in Sections II and III. Next,
we introduce our proposed algorithms and system models,
in Sections III and IV, respectively. We continue with the
experiments and their validation, in Sections VI and VII.
Finally, Section VIII presents concluding remarks.

II. RELATED WORK

Temporal difference learning has been applied to real
robotic systems before (see [3] for a survey). Often this is done
in discrete state spaces [7], [8]. This works well in small state
spaces (a few hundred states), when the actions themselves
are feedback controllers, or when the required accuracy is
low. Another tactic is pre-training in simulation or priming
with a predefined or demonstrated policy [9], [10]. By such an
initialization of the value function, generally a good policy can
be found with just local changes. However, this introduction
of prior knowledge is what we wanted to avoid.

Parameterized control policies may also be used in the TD
setting, leading to algorithms that use an estimated value func-
tion to update an explicitly represented control policy (actor-
critic, [11]). Such algorithms share many of the properties
of policy search, but have lower variance in the computed
gradients and allow for very loosely-defined policy parameteri-
zations [12], reducing prior knowledge. The DYNA framework
was first formulated for actor-critic systems (DYNA-PI), but
showed more promise without an explicit policy representation
(DYNA-Q) [13].

A good strategy to reduce the number of required samples is
to use batch-mode reinforcement learning [14], [15], in which
all samples are used collectively to estimate the value function.
This allows for the use of advanced supervised learning meth-
ods, which can have better generalization properties. However,
while the samples are being processed off-line, the system is
not controlled, or at least controlled with an outdated policy.

2162-237X c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000

Instead of using the samples to estimate the value function
directly, we can also use them to learn the system dynam-
ics [16]. This learned model may then be used to increase the
efficiency of direct updates [12], or – the solution adopted in
this paper – to generate simulated experience. Just like real
experience, simulated experience can be used in batches [17],
or it can be intermixed with regular value function updates [5].
In the latter case, all processing is done on-line, and the most
up-to-date policy is always available for controlling the agent.
Such an anytime approach has proven successful in previous
work with discrete value functions [18], [19].

To vastly increase the number of model updates between
control steps, we employ parallel processing by running many
planning threads in parallel. Such parallelization has until now
only been used to learn from multiple agents [20] or to learn
multiple tasks [21], and not to speed up learning a single
task with a single agent. Although DYNA has previously been
applied in a parallel setting [22], it was not itself parallelized.
Instead, each agent ran a separate instance of the DYNA
algorithm.

A different parallelization approach, orthogonal to ours, is to
parallelize the readout or update of the function approximator
itself. This is most efficient when using heavy weight function
approximators such as used in batch-mode techniques [23], but
on-line temporal difference learning may benefit as well [24].

III. METHODS

A. Reinforcement Learning

In reinforcement learning [1], we try to find an optimal
policy π : S,A → [0, 1] for a Markov Decision Process
< S,A, T,R >, with S a set of states s, A a set of actions
a, T : S,A,S → [0, 1] a state transition function and
R : A,S → R a reward function. In model-free temporal
difference (TD) learning, this is done by estimating a state-
action value function Qπ : S,A → R, which indicates for
each state-action pair (s, a) the expected return Rt of taking
action a in state s and following π afterwards. The return is the
discounted sum of future rewards r starting from the current
timestep t:

Rt =

∞∑
k=0

γkrt+k+1 (1)

with γ a discount rate that determines the planning horizon.
In TD control, the policy is derived from the value function
by choosing the action with the highest expected return. To
encourage exploration, an ε-greedy policy is often used, which
chooses a random action with probability ε:

π(s, a) =

{
1− ε+ ε

|A| if a = maxa′ Q
π(s, a′)

ε
|A| otherwise

(2)

The optimal value function Q∗, defining the optimal policy
π∗, is the unique solution to the Bellman equation

Q∗(s, a) =
∑
s′

T (s, a, s′)
(
R(a, s′) + γmax

a′
Q∗(s′, a′)

)
.

(3)

It is calculated by sampling state transitions (s, a) → (r, s′)
along a trajectory and updating Q towards minimizing the
temporal difference error δ. In the SARSA algorithm:

δ = R(a, s′) + γQ(s′, a′)−Q(s, a) (4)
Q(s, a) ← Q(s, a) + αδ (5)

with α a learning rate that sets the parameter of an exponential
moving average filter determined by the stochasticity of T and
R.

B. Linear function approximation

In motor control, S is a continuous space with states
s ∈ Rn, in general consisting of joint positions and velocities.
It is therefore necessary to approximate the value function
Q. Linear approximations are especially favored, because they
have the best convergence guarantees [25]. In this case, a state-
action pair (s, a) is mapped onto a vector φ(s, a) of feature
activations, and Q(s, a) is approximated by

Q̂(s, a) = θTφ(s, a), (6)

where θ is the vector of learned parameters (weights). Both S
and A may thus be continuous, although in general the max
operator in Eq. 2 is still implementated by iterating over a
discrete number of actions.

Updates to θ can be made using gradient descent, such that
Eq. 5 becomes

θ ← θ + α∇θQ̂(s, a)δ (7)
← θ + αφ(s, a)δ. (8)

In particular, in tile coding function approximation [26], each
state-action pair activates one binary feature in a fixed number
g of overlapping grids. The main advantage is that φ is sparse,
which both increases the computational efficiency and the
locality of updates.

C. DYNA

The SARSA algorithm uses each sample only once. Even
when using SARSA(λ), which adds eligibility traces that cause
recently visited states to be updated as well, this seems a waste.
In the DYNA architecture [5], this problem is addressed by
building a model of the state transition and reward functions
using all experienced samples. After each TD update, K
planning updates are performed by sampling experiences from
the model. This may be done randomly, using prioritized
sweeping [27], or by sampling trajectories of simulated expe-
rience. If the model generalizes well, the planning updates will
move the value function in the direction of the optimal value
function, speeding up the learning process. However, this is
subject to a bias-variance trade-off and can not be guaranteed.

DYNA has shown great promise for control in discrete state
spaces [18] and policy evaluation in continuous state spaces
using function approximation, for which a convergence proof
is available [28]. However, this is not the case for control with
value function approximation. Additionally, the model learned
by the original algorithm is a generic state transition model,
requiring O(|S|2|A|) storage (although this may be sparse and

CAARLS AND SCHUITEMA: FAST ON-LINE TEMPORAL DIFFERENCE LEARNING FOR MOTOR CONTROL 3

represented in the same feature space as the value function).
We can exploit the limited stochasticity of motor control by
using a more specific model.

In order to be computationally efficient the model should
be fast to learn and evaluate, such that the planning updates
can use the most recent information and many of them
can be performed per control step. To avoid fluctuations in
the induced value function, successive approximations should
exhibit stable convergence, without asympotic bias, such that
in the limit the planning updates coincide with experience.

Note that, as the model generalizes over unseen state tran-
sitions, it might erroneously predict low-reward dynamics in a
region of state space. The low values induced by the erroneous
model subsequently reduce the probability of visiting that
region, which in turn prohibits the model from being corrected.
Various ”exploration bonus” strategies exist to remedy this
situation [5], [29], but we have found that in our experiments
the ε-greedy strategy provided sufficient exploration.

D. Locally weighted regression

As model approximator we use locally weighted linear
regression (LWR, [30]), which satisfies our requirements and
has proven very well suited to continuous motor control
tasks [31], [32]. LWR is a nonparametric regression method
that predicts the next state by fitting a linear model through
experienced state transitions close to the query point.

All dimensions were scaled to their maximum range. For
velocities we took a range such that it is not exceeded
during normal operation, except for the two-link manipulator
problem where they were saturated at ±2π rad/s in the original
formulation. Let

q = [s, a] (9)

be a normalized query point for which we want to evaluate
the model. We find the

k = 4 · (dim(S) + dim(A)) (10)

nearest neighbors using approximate nearest neighbor
search [33]. Each point in the model stores a state transition,
including the originating state s, action a, difference in state
∆s = s′ − s, resulting reward r and whether the episode
terminated t. The nearest neighbor search returns the input
and output matrices

NI =

s1, a1

s2, a2

· · ·
sk, ak

 , NO =

∆s1, r1, t1

∆s2, r2, t2

· · ·
∆sk, rk, tk

 (11)

and the distances to the query point

di = ‖[si, ai]− q‖2. (12)

We use nearest neighbor bandwidth selection, so that the
weight of each neighbor is given as

wi =

√
e
−
(

di
h

)2

, (13)

where
h = max

i
di. (14)

Defining W as the matrix with diagonal elements wi, the
weighted input and output matrices then become

A = W [NI , 1]

B = WNO
(15)

and we solve
(ATA)X = ATB (16)

using the Cholesky decomposition with Tikhonov regulariza-
tion. The mean of the prediction is then simply

[∆s, r, t] = [q, 1]X. (17)

The residual of the model fit

E = AX −B (18)

can be used to calculate the prediction variance

σ̂j
2 =

∑
iE

2
ij

nLWR − pLWR
, (19)

where
nLWR =

∑
i

w2
i (20)

is a weighted measure of the number of data points used in
the fit and

pLWR =
∑
i

w2
iA

T
i (ATA)−1Ai (21)

is a measure of the local number of free parameters in the
model. The prediction of the next state and reward is then
drawn from a normal distribution defined by the calculated
mean and variance. The termination prediction, being a binary
variable, is drawn from a Bernoulli distribution using only
the mean (a linear probability model). Angles are wrapped
between −π and π.

The choice of distance function (scaling), number of neigh-
bors to consider (Eq. 10), weighting function (Eq. 13) and
bandwidth selection (Eq. 14) is heuristic. We experimented
with various settings, but did not experience a large sensitivity
to these parameters.

E. Sparse online Gaussian processes

To validate the choice of an LWR model, we compare it
against another real-time model building algorithm, sparse on-
line Gaussian processes [34]. Gaussian processes have recently
proven successful in policy search [35], and are therefore a
good candidate. A disadvantage is their complexity, which is
cubic in the number of samples. SOGP therefore maintains a
fixed set of basis vectors, automatically adding and removing
appropriate samples when necessary. We used the default
settings of the SOGP C++ library by Dan Grollman1 (Gaussian
RBFs with width w=0.1, σ2

0 = 0.1), and 500 basis vectors.

1Code available at https://code.google.com/p/brown-rlab

https://code.google.com/p/brown-rlab

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000

IV. ALGORITHMS

We will now introduce two new parallel reinforcement
learning algorithms, parallel DYNA and parallel locally linear
fitted Q-iteration. But first we will discuss specific issues re-
lated to parallelizing any algorithm which features concurrent
access to a shared value function.

A. Parallelization

We have chosen not to parallelize the process of evaluating
or updating the function approximator itself, but instead to
perform multiple planning updates in parallel. As the linear
function approximators usually employed in on-line temporal
difference control have low computational complexity (O(g)
in tile coding), the synchronization overhead would be too
high.

To avoid serializing the process, we do not employ mutual
exclusion locks. This prevents us from performing collision
detection on the hash table that usually stores the parameter
vector for linear function approximators. As a consequence,
a feature may participate in more than the intended region of
state-space. While this does not affect convergence, it affects
the approximation error. We chose the table size sufficiently
large such that this rarely occurs in practice.

Evaluating the function approximator requires reading a
number of separate weights. Without locking, these may be
in an inconsistent state and lead to unpredictable results.
However, as long as the approximated value from such an
inconsistent state is a weighted average of the original and
updated values, it can simply be interpreted as an update
that was performed with a lower effective learning rate α.
From Eqs. 6 and 8, this is clearly the case for linear function
approximation if all elements of φ have the same sign. In the
nonlinear case, the effective α is arbitrary and may lead to
divergence.

Finally, the sets of weights written by two threads may over-
lap, in which case updates by one of the threads are partially
lost. This again reduces the efficiency of the parallelization.
It is therefore important for φ to be sparse, such that, in
general, threads will be operating on different parts of the
parameter vector. Tile coding satisfies this requirement, but
using eligibility traces severely reduces the locality of updates.

B. Parallel DYNA

We are now ready to present parallel DYNA, our parallel
implementation of the DYNA architecture that aims to dras-
tically increase the number of planning updates per control
step K. A schematic representation is depicted in Figure 2,
while the algorithm itself is given in Algorithm 1. Instead of
a single control loop, we have separate threads for the agent,
model creation and planning [19]. The agent thread uses a
policy derived from the current value function estimate Q̂ and
adds experienced transitions to the queue T , which is used by
the model thread to update the model M̂ . With all remaining
computational power, the P DYNA threads use the model to
plan using simulated experience, updating Q̂.

The final value of K depends on P , the control step time,
and the computational complexities of the model and value

Fig. 1. On-policy parallel DYNA on trajectories
1: Obtain initial model approximation M̂ and action-value

function approximation Q̂
2: T ← ∅
3: continuous loop AgentThread
4: Initialize s, a
5: repeat
6: Take action a, observe r, s′

7: Add (s, a)→ (r, s′) to T
8: Draw a′ ∼ π(s′, ∗)
9: Update Q̂(s, a) towards r + γQ̂(s′, a′)

10: s← s′, a← a′

11: until episode ends
12: end loop
13: continuous loop ModelThread (1 Hz)
14: for each (s, a)→ (r, s′) in T do
15: Update M̂(s, a) towards (r, s′)
16: Remove (s, a)→ (r, s′) from T
17: end for
18: end loop
19: continuous loop DynaThread (P instances)
20: Initialize sm, am
21: repeat
22: Predict r̂, ŝ′m using M̂
23: Draw a′m ∼ π(ŝ′m, ∗)
24: Update Q̂(sm, am) towards r̂ + γQ̂(ŝ′m, a

′
m)

25: sm ← ŝ′m, am ← a′m
26: until episode ends or ŝ′m becomes unreliable
27: end loop

System

Value function

AgentThread

Model

Transition queue

a

s, r

s, a→ s′, r

s, a, Q̂(s, a)

Q̂(s, a)s, a

Q̂(s, a)

s, a

DynaThread

z−1

s

a

a

s, a s′, rs

ModelThread

kd-tree

T

M̂

Q̂

Fig. 2. Schematic representation of parallel DYNA. As LWR is instance-
based, the model thread is only concerned with building the kd-tree necessary
for fast nearest neighbor search.

CAARLS AND SCHUITEMA: FAST ON-LINE TEMPORAL DIFFERENCE LEARNING FOR MOTOR CONTROL 5

function approximators. In our implementation, the model
approximation M̂ is made using locally weighted linear regres-
sion (LWR, [30]), which is dominated by the nearest neighbor
search with complexity O(k log |M̂ |) and the Cholesky de-
composition with complexity O((dim(S) + dim(A))3). The
value function Q̂ is approximated using hashed tile coding
with g = 16 tilings of regularly displaced rectangles2, which
requires O(|A|g) to evaluate all actions. The linear approxi-
mation and sparse feature activations allow safe and efficient
lock-free multithreaded interaction, which we will verify with
experiments.

The policy is ε-greedy, and value function updates are made
using SARSA(λ) with replacing eligibility traces truncated
below 10−4. Planning updates do not use eligibility traces,
for reasons described in the previous section.

We use trajectory sampling of predicted experience starting
from an experienced start state, meaning that we interact with
the approximate model as if it were the real system. Planning
continues until the prediction variance exceeds the range of
the state parameters, marking an unreliable prediction; in that
case, the planning episode is terminated and a new one started.
This typically happens when extrapolating beyond the support
of the model.

As we mentioned before, there is no proof of convergence
for using DYNA with function approximation for control,
and in fact using single-step random samples or prioritized
sweeping showed only modest gains [28]. However, SARSA
updates with trajectory sampling are known to converge [25]
with a static environment. We can therefore expect DYNA
to perform well if the model changes sufficiently slowly and
does itself converge to an unbiased estimation. In that case, the
framework may be viewed as successively solving increasingly
accurate models of the environment [36].

C. Parallel locally linear fitted Q-iteration

Because of the success of batch-mode reinforcement learn-
ing algorithms in the Fitted Q-iteration (FQI) family [37], [38],
we would like to compare our DYNA implementation with an
algorithm of that kind. In FQI, batches of observed transitions
(s, a) → (r, s′) are iteratively converted into a sample set
(s, a) → r + γmaxa′ Q̂(s′, a′) by maximizing over the next
action. This sample set is then used collectively to train the
next iteration of the approximator Q̂ using any supervised
learning algorithm.

However, as stated before, we do not wish to interrupt the
real-time control due to batch processing. This can be avoided
by using an incremental supervised learning algorithm to train
the approximator, for example kernel-based techniques [39].
The approximator can then be evaluated continuously, in
parallel with the control loop. Such algorithms are similar
to experience replay [40], but only store the values of the
experienced states. Other values are interpolated by applying
the kernel function to nearby states.

In our implementation we use LWR as the kernel regressor,
so we call this locally linear fitted Q-iteration (LLFQI), shown

2The implementation was based on http://webdocs.cs.ualberta.ca/∼sutton/
tiles2.html

Fig. 3. Parallel locally linear fitted Q-iteration
1: Q ← ∅
2: continuous loop AgentThread
3: Initialize s, a
4: repeat
5: Take action a, observe r, s′

6: for each a′ ∈ A do
7: Calculate Q̂(s′, a′) using LWR on Q
8: end for
9: Add (s, a, r, s′) to Q with target value

r + γ
∑
a′ π(s′, a′)Q̂(s′, a′)

10: Draw a′ ∼ π(s′, ∗)
11: s← s′, a← a′

12: until episode ends
13: end loop
14: continuous loop EvaluationThread (P instances)
15: Select random q = (s, a, r, s′) ∈ Q
16: for each a′ ∈ A do
17: Calculate Q̂(s′, a′) using LWR on Q
18: end for
19: Set target value of q to r + γ

∑
a′ π(s′, a′)Q̂(s′, a′)

20: end loop

in Algorithm 3. For a fair comparison, we use a parallel
implementation with expected on-policy updates [41].

Note that, as with parallel DYNA, we use approximate
nearest neighbor search to determine the neighboring points.
This requires the construction of a kd-tree, which is done
periodically, similar to the ModelThread in Algorithm 1.
Furthermore, the neighbors of a sample and part of the
regression step are cached when the sample is added and only
recalculated when a new kd-tree is built. In particular, Eq. 16
can be split into

(ATA)Y = AT (22)
X = Y B, (23)

where the first part only depends on the neighbor positions
and not their values.

The scheme is therefore very similar to Figure 2, except
that the model M̂ does not return next states, but abstract
local models Y . The value function is then consulted to
find the target values of neighboring points that make up B.
The largest difference therefore is that parallel DYNA uses
LWR to extrapolate in transition space, while parallel LLFQI
extrapolates in value space.

Note that each update only writes a single (atomic) variable,
the target value. As such, no inconsistencies due to larger
weight sets as described in Section IV-A occur. The only
consequence of parallelization is that a point may be updated
with an unpredictable mix of older and newer data. However,
that also occurs in the sequential case due to the random
sequencing of updates.

V. SYSTEMS

We investigate the performance of the parallel DYNA al-
gorithm with four classic simulation setups. Additionally, we

http://webdocs.cs.ualberta.ca/~sutton/tiles2.html
http://webdocs.cs.ualberta.ca/~sutton/tiles2.html

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000

validate the simulation results on two real-world setups.

A. Simulation

The simulated systems are pendulum swing-up, two-link
manipulator, cart-double-pole balancing and cart-pole swing-
up. They are depicted schematically in Figure 4.

1) Pendulum swing-up: We use the pendulum system de-
scribed in [42] (Section 4.5.3), which consists of a DC motor
with a round plate attached to the outgoing axis, see Figure 5a.
On the plate, a weight is fixed in a decentered location, creat-
ing a pendulum (Figure 4a). The motor is voltage controlled
with u ∈ {−3, 0, 3} V.

The system may be modeled as in Equation (24)

Jθ̈ = mgl sin(θ)−
(
b+

K2

R

)
θ̇ +

K

R
u (24)

with state s = [θ, θ̇]T and constants J = 1.91 · 10−4 kgm2,
m = 0.055 kg, g = 9.81 m/s2, l = 0.042 m, b =
3 · 10−6 Nms/rad, K = 0.0536 Nm/A and R = 9.5Ω.

The task of the system is to swing up the weight, although
the motor does not have enough torque to do this in one swing.
We used a discount rate γ = 0.97, reward function r = −5θ2−
0.1θ̇2 − u and 3 s trials. Each trial was started at s0 = [π, 0].
The control step time was 0.03 s.

2) Two-link manipulator: The two-link manipulator [42]
(Section 4.5.2) is similar to the pendulum, but has two links
and is located in the horizontal plane (Figure 4b). The motors
are controlled by τ = [τ1, τ2]T , τ1 ∈ {−1.5, 0, 1.5} Nm,
τ2 ∈ {−1, 0, 1} Nm.

This system is described by the fourth-order continuous-
time nonlinear model

M(θ)θ̈ + C(θ, θ̇)θ̇ = τ (25)

where

M(θ) =

(
P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

)

C(θ, θ̇) =

(
b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

P3θ̇1 sin θ2 b2

)
(26)

with state s = [θ1, θ̇1, θ2, θ̇2] and P1 = m1c
2
1 + m2l

2 + I1,
P2 = m2c

2
2 + I2, and P3 = m2lc2. The physical parameters

are length of the pole l = 0.4 m, masses m1 = 1.25 kg,
m2 = 0.8 kg, inertias I1 = 0.066 kgm2, I2 = 0.043 kgm2,
centers of mass locations c1 = c2 = 0.2 m, and damping
b1 = 0.08 kg/s and b2 = 0.02 kg/s.

The task here is to balance the arms in the straight position,
hampered by the nonlinear dynamics of the two links affecting
eachother. For this system we used a discount rate γ = 0.98,
reward function r = −5θ21−0.05θ̇21−5θ22−0.05θ̇22 and 3 s tri-
als. Each trial was started at a random state s0 = [η1, 0, η2, 0]
with η ∈ [0, 2π). The control step time was 0.05 s.

3) Cart-double-pole balancing: To get a higher-
dimensional system, we place the two links on a cart,
this time in the vertical plane again (Figure 4c). The cart may
be pushed with a force F ∈ {−20, 0, 20} N. This results in

the cart-double-pole balancing problem, for which we use the
formulation as in [43]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = Qq (27)

where

M(q) =

h1 h2 cos θ1 h3 cos θ2

h2 cos θ1 h4 h5 cos(θ1 − θ2)

h3 cos θ2 h5 cos(θ1 − θ2) h6

C(q, q̇) =

0 −h2θ̇1 sin θ1 −h3θ̇2 sin θ2

0 0 h5θ̇2 sin(θ1 − θ2)

0 −h5θ̇1 sin(θ1 − θ2) 0

q =

x

θ1

θ2

 , g(q) =

0

−h7 sin θ1

−h8 sin θ2

 , Qq =

F

0

0

(28)

with

h1 = mc +m1 +m2 h5 = m2c2l

h2 = m1c1 +m2l h6 = m2c
2
2 + I2

h3 = m2c2 h7 = m1c1g +m2lg

h4 = m1c
2
1 +m2l

2 + I1 h8 = m2c2g

(29)

and state s = [x, ẋ, θ1, θ̇1, θ2, θ̇2] and constants mc = 0.5 kg,
m1 = m2 = 0.5 kg, g = 9.82 m/s2 and l = 0.6 m. The centers
of mass c1 = c2 = 0.3 m were set in the middle; the inertias
of the poles are therefore I1 = m1l

2/3 and I2 = m2l
2/3.

The goal is to balance the poles in the upright position, start-
ing from a slightly perturbed state s0 = [η1, 0, η2, 0, η3, 0] with
η ∈ [−5, 5] mm or mrad. The reward is 1 for each timestep
in which [−2.4,−0.7,−0.7] < [x, θ1, θ2] < [2.4, 0.7, 0.7] and
the episode ends with a reward of 0 otherwise. The episode
also ends after 5 s of successful balancing. The control step
time was 0.05 s, with a discount rate γ = 0.97.

4) Cart-pole swing-up: The last simulated system is the
cart-pole swing-up problem (Figure 4d). Although the system
has less degrees of freedom than cart-double-pole, the problem
is harder because the system is not started in the balanced
position. Instead, the cart has to be moved back and forth
until the balanced position is achieved, and subsequently
maintained.

Our cart-pole system is that of [44], but with the pole
starting in the down position and without modelling friction.
The equations of motion are:

θ̈ =
g sin θ + cos θ

[
−F−mlθ̇2 sin θ

mc+m

]
l
[
4
3 −

m cos2 θ
mc+m

]
ẍ =

F +ml
[
θ̇2 sin θ − θ̈ cos θ

]
mc +m

(30)

with state s = [x, ẋ, θ, θ̇] and constants g = 9.8 m/s2, mc =
1 kg, m = 0.1 kg and l = 0.5 m.

The applied force on the cart F ∈ {−10, 10} N and the state
s = [x, ẋ, θ, θ̇]. Each trial started at a slightly perturbed state

CAARLS AND SCHUITEMA: FAST ON-LINE TEMPORAL DIFFERENCE LEARNING FOR MOTOR CONTROL 7

θ

g

l

m

(a) Pendulum swing-up

θ1

θ2

l

m2

m1

(b) Two-link manipulator

x

θ1

θ2

F

g

l

m2

m1

mc

(c) Cart-double-pole balancing
x

θ

F

g

m

l

mc

(d) Cart-pole swing-up

Fig. 4. Sketches of the four simulated systems.

s0 = [0, 0, π + η, 0] with η ∈ [−50, 50] mrad and lasted 10 s
or until the position x left the interval [−2.4, 2.4], in which
case a reward of −104 was given. We used a discount rate of
γ = 0.97 with reward function r = −θ2−0.1θ̇2−2x2−0.1ẋ2.
The control step time was 0.05 s.

B. Real-world

Our real-world setups are realizations of the pendulum
swing-up and two-link manipulator systems from section V-A,
shown in Figure 5.

1) Pendulum swing-up: The pendulum swing-up system
(Figure 5a) is a faithful implementation of the model of
Section V-A1. Because the plate is directly driven by the
DC motor, there is a minimum of backlash and encoder
discrepancies.

2) Two-link manipulator: The real two-link manipulator
setup is slightly different than the one presented in Sec-
tion V-A2, with Dynamixel RX-28 motors actuating the joints
with τ1, τ2 ∈ {−25, 0, 25} % of maximum torque, and the task
being to move from a “pick” position at s0 = [−π/4, 0, π/4, 0]
to a “place” position p = [π/4, 0,−π/4, 0], see Figure 5b. The
reward function was therefore centered on p instead of the

TABLE I
LEARNING PARAMETERS FOR THE SIMULATED TASKS. THE PARAMETERS
FOR THE REAL VARIANTS OF TASKS V-A1 AND V-A2 WERE THE SAME AS

IN SIMULATION.

Task γ λ α ε Tile widths

V-A1 0.97 0.65 0.2 0.05 π/10, π
V-A2 0.98 0.92 0.4 0.05 π

10
, π, π

10
, π

V-A3 0.99 0.92 0.2 0.02 2.5,2.5, π
40

, π
4

, π
40

, π
4

V-A4 0.97 0.65 0.2 0.05 2.5,2.5, π
20

, π
2

zero position. Additionally, the trials were terminated when
the target position was reached, and a penalty of −100 given
when the workspace of [−1.25, 1.25] rad was exceeded.

VI. EXPERIMENTS

We now present the results of our simulation experiments,
comparing them with other algorithms, as well as investigating
the impact of some design choices. In all cases, the learning
rate for the planning threads was one tenth the learning rate
of the agent thread, to account for model inaccuracies. No
eligibility traces were used during planning. The experiments
were performed on a dual 8-core Intel Xeon E5-2665 machine,

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000

(a) Pendulum swing-up (b) Two-link manipulator (horizonal plane)

Fig. 5. The two real-world setups in their respective start positions.

Fig. 6. Rise time versus number of updates per control step for the cart-
double-pole balancing and pendulum swing-up problems. Also depicted are
the number of updates per control step performed by 1, 2, 4, 8 and 16 parallel
threads for the cart-double-pole system. The hard plateau in the pendulum
reference model line occurs because the system learns the task in the first
trial.

with the parallel algorithms using 14 threads. The learning
parameters of all tasks are summarized in Table I. The
basic parameters for the pendulum and two-link manipulator
were derived from the originating papers, while the others
were based on these and coarsely optimized for SARSA(λ)
performance.

The learning trials were interrupted by regular test trials,
in which exploration was set to zero. We only report the
cumulative reward of these test trials. We characterize the rise
time by the time required to reach a system-specific cumulative
reward, measured by taking the average over all runs of the
first time this value is passed for three or more consecutive
test trials. The end performance was averaged over the last 10
test trials of all runs.

A. Parallel efficiency

We start by looking at the efficiency of the parallelization.
Figure 6 plots the rise time of the cart-double-pole balancing
and pendulum swing-up problems against the number of
updates per control step K. K scales well with the number of
threads (vertical lines), with a maximum speedup of 13.3 for
16 threads, validating the lock-free implementation.

Looking at the solid and dotted lines for the cart-double-
pole balancing problem, we can see that doing the updates
in parallel results in the same performance as doing them
sequentially with a single thread. Updates with internally
inconsistent features therefore do not measurably impact the
learning.

In general, doing more updates per control step decreases
the rise time, but there are diminishing returns. The learned
model is only valid around the experienced data points.
How well these points are generalized is system and model-
dependent. When we compare the results for our learned
model with those of a perfect reference model (dashed lines)
we see that our model only “supports” a limited number of
updates per control step, after which the performance gains
taper off. Nonlinearities in the transition and reward functions
reduce this value. For example, the pendulum swing-up (black
lines) supports less updates per control step because it is
nonlinear in the transition from start to goal state.

B. Performance evaluation

We now analyze the performance of parallel DYNA with
respect to SARSA(λ) and our FQI variant, parallel LLFQI.
As can be seen in Figure 7 and Table II, both parallel DYNA
and parallel LLFQI are significantly faster than SARSA(λ),
although the results are very system-dependent. The difference
is most clear for the cart-double-pole balancing problem,
where the speedup of parallel DYNA is 94x over SARSA(λ)
and 69x over parallel LLFQI. Note, however, the superior
end performance of parallel LLFQI for the cart-pole swing-
up problem. In particular, it very quickly learns not to go off
track, which is why the learning curve starts higher.

CAARLS AND SCHUITEMA: FAST ON-LINE TEMPORAL DIFFERENCE LEARNING FOR MOTOR CONTROL 9

TABLE II
SIMULATION RESULTS. UNLESS OTHERWISE STATED, THE ALGORITHM IS PARALLEL DYNA WITH 14 THREADS USING LWR MODEL APPROXIMATION
WITH STOCHASTIC READOUT, WITH TRAJECTORIES STARTING AT AN EXPERIENCED START STATE AND WITHOUT REFERENCE REWARDS. THE NAMING
INDICATES WHICH PART OF THIS DEFAULT SETUP CHANGED. GIVEN ARE THE MEANS AND 95% CONFIDENCE INTERVALS OVER 25 RUNS. THE VALUES

THAT ARE WITHIN THE 95% CONFIDENCE INTERVAL OF THE BEST VALUE FOR THAT SYSTEM ARE HIGHLIGHTED.

pendulum swing-up two-link manipulator cart-2-pole balancing cart-pole swing-up
rise (s) end perf rise (s) end perf rise (s) end perf rise (s) end perf

SARSA(λ) 1201 (106) -870 (20) 4242 (439) -77.7 (4.6) 2424 (227) 95.0 (1.5) 11697 (765) -437 (92)
Parallel DYNA (14 threads) 14.9 (2.0) -832 (6.6) 82.6 (8.3) -65.7 (5.6) 25.8 (4.1) 100.6 (0.3) 342 (25) -521 (143)
Parallel locally linear FQI 156 (33) -926 (37) 325 (79) -99.8 (12) 1780 (177) 99.3 (1.1) 1151 (216) -257 (26)
Single threaded DYNA 34.7 (2.5) -817 (10) 429 (17) -70.2 (8.8) 182 (35) 99.7 (0.6) 837 (84) -635 (253)

SOGP model 70.7 (7.6) -818 (7.4) 706 (137) 96.9 (1.4)
Deterministic LWR model 14.7 (1.4) -830 (7.3) 83.4 (6.7) -64.7 (5.3) 19.6 (2.0) 100.7 (0.3)

Current start states 16.2 (5.9) -868 (21) 77.8 (17) -72.4 (4.9) 22.8 (2.1) 101 (0.04)
Random start states 14.3 (2.2) -831 (11) 84.3 (9.7) -63.4 (6.0) 27.1 (4.0) 100.5 (0.4)

Known reward function 17.4 (2.3) -805 (3.9) 65.8 (8.8) -72.2 (6.9) 24.9 (3.1) 101 (0.07) 23.0 (2.1) -298 (4.8)
PILCO∗ 9.9 (5.0) -832 (50) 16.5 (1.5) 100.5 (0.7) 37.0 (14) -418 (32)

∗Averaged over 10 successful runs.

(a) Pendulum swing-up (b) Two-link manipulator

(c) Cart-double-pole balancing (d) Cart-pole swing-up

Fig. 7. Performance evaluation of parallel DYNA compared to SARSA(λ), parallel LLFQI and single-threaded DYNA. Shown are the mean and 95% confidence
interval over 25 independent runs. The horizontal line is the point at which the rise time is measured. For all systems, parallel DYNA is significantly faster
(note the logarithmic time axis). The end performance is higher as well, except for the cart-pole swing-up problem.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000

(a) Pendulum swing-up. Shown are the mean and 95% confidence interval
over 25 independent runs.

(b) Two-link manipulator. Shown are the mean and 95% confidence
interval over 12 (DYNA) or 6 (SARSA(λ)) independent runs.

Fig. 8. Comparison of SARSA(λ) and parallel DYNA on the real setups.

The performance of parallel DYNA on the pendulum is
also significantly faster than that reported for various model-
learning actor-critic variants in [12] (14.9s vs ∼5-10min), and
than online LSPI on the two-link manipulator as reported
in [42] (82.6s vs ∼30min). The speedup over single-threaded
DYNA is less dramatic (2x-7x), but still significant. Note that
a single thread of our algorithm performs ∼1500 updates per
control step, much more than the ∼10 commonly used in
literature.

C. Model choice

We have chosen to use locally weighted linear regression
with stochastic readout as the model approximator for parallel
DYNA. Comparing it to sparse online gaussian processes and
LWR with deterministic readout (second set of results in
Table II), we can see that LWR does indeed perform better
than SOGP. One of the reasons for the worse rise time of
SOGP is the slower readout compared to LWR. While with
LWR we can achieve up to 5.0 · 105 model updates/s, with
SOGP this is only 3.4 · 103.

We could not find good SOGP parameter settings for the
two-link manipulator problem. On our machine, the number
of basis vectors that could be handled in real-time was ∼700,
but using more vectors or different widths also did not prove
sufficient. We also refrained from testing the cart-pole swing-
up problem due to prohibitively long learning times.

The performance of deterministic LWR readout (taking
only the mean) is very similar to the stochastic version.
As all the investigated systems are deterministic, a perfect
model does not require stochasticity, but modelling the model
uncertainty is also not essential in this case. In this regard, an
advantage of our approach over model-based policy search is
that the temporal correlation [32] between predictions is less
important, as each SARSA(0) planning update is based on just
a single one-step prediction, instead of the whole trajectory.

D. Choice of start state

We opted to start each planning episode in a random expe-
rienced start state of the system. This most closely resembles
the actual agent, but might not be optimal. We therefore
compared starting from experienced start states to starting
from the current agent state (similar to TD search [45]) and
from random experienced points.

In general, the results (third set in Table II) are not signifi-
cantly different, although starting from the current state has a
lower end performance for the pendulum swing-up problem.
As, after some initial learning, the agent spends most of its
time balancing the pendulum, starting from the current state
means that the planner doesn’t try to decrease the swing-up
time. However, it is faster for the cart-double-pole balancing
problem, perhaps because it is spending more effort in states
where the pole is already slightly out of balance.

E. Reference rewards

Finally, we compare the performance of learning a full
system model (state transitions, rewards and termination crite-
rion) to only learning the system dynamics. In many cases the
reward function is known beforehand, and it is unproductive
not to use this information. We therefore use the actual reward
function in planning.

The result is significantly faster learning for the two-link
manipulator and cart-pole swing-up problems, and better end
performance for the pendulum swing-up problem. In partic-
ular, with reference rewards, the cart-pole swing-up problem
can be solved in only 23s.

Using reference rewards allows us to make a meaningful
comparison to the state-of-the-art model learning policy search
algorithm PILCO [35], which requires known, differentiable
reward functions. PILCO is a good reference, because it
outperforms many other current algorithms by at least an order
of magnitude.

Being a policy search algorithm, it is easy to record and
use the best policy instead of the final one. The PILCO rise

CAARLS AND SCHUITEMA: FAST ON-LINE TEMPORAL DIFFERENCE LEARNING FOR MOTOR CONTROL 11

time was therefore calculated as the first time the cumulative
reward (averaged over 10 initial positions) of a generated
policy passed the set reward, instead of three consecutive such
policies. Additionally, the end performance is the maximum
over the entire run instead of the average over the last trials.

The learning parameters were set to the closest matching
example in the PILCO software3 and optimized from there. In
particular, we used the original reward functions for learning,
while we report the end performance on the rewards from
Section V. Although both optimize towards the same goal
state, the results can be slightly different.

The rise times (last set in Table II) are competitive, with a
difference of less than a factor of two either way on the tested
systems. PILCO was faster on the pendulum swing-up and
cart-double-pole balancing tasks, but slower on the cart-pole
swing-up. However, the PILCO software was unable optimize
the two-link manipulator task due to the broad starting state
distribution.

Note that the PILCO results are given for the successful
runs only. The success rate was 70% for the pendulum, 100%
for the cart-double pole balancing, and 60% for the cart-
pole swing-up. Furthermore, the rise time is the required
experimentation time, but PILCO typically requires hours of
additional computation whereas parallel DYNA runs in real-
time. It would be interesting to see how close PILCO can get
to real-time operation when using a parallel implementation.

VII. VALIDATION

We now validate our simulation results with real-world
variants of the pendulum swing-up and two-link manipulator
systems. The resulting learning curves are plotted in Figure 8.
In both cases, parallel DYNA is significantly faster than
SARSA(λ), the difference being 20x for the pendulum and 60x
for the manipulator. Note that it was impossible to do more
than 6 runs for SARSA(λ) on the manipulator, as excessive
jitter caused too much damage to the gearboxes. This could be
alleviated by limiting the bandwidth of the action signal [46].

Especially on the two-link manipulator, there is significant
play in the joints as well as noise on the encoder values. The
fact that parallel DYNA still performs well on this problem
shows that it is robust against these effects, which are common
in robotic systems.

VIII. CONCLUSIONS

We have presented parallel DYNA, an on-line temporal dif-
ference learning method suited for motor control. Using locally
weighted linear regression to estimate a model of the system
dynamics, it runs many planning threads in parallel to exploit
this information. We have shown that parallel DYNA works
well on simulated control tasks, achieving almost two orders
of magnitude speedup over the standard on-line algorithm,
SARSA(λ), and taking the same amount of experimentation
time as the state-of-the-art policy search method PILCO but
without the additional computation time. We have validated
the simulation results on two real-world robotic setups, where
similar speedups were reached.

3http://mlg.eng.cam.ac.uk/pilco/release/pilcoV0.9.zip

As future work we would like to scale up to more degrees
of freedom, and to investigate systems with discontinuities in
the transition function, such as impacts.

ACKNOWLEDGMENT

The authors would like to thank Martijn Wisse and Pieter
Jonker for fruitful discussions, as well as Robert Babuška and
the Delft Center for Systems and Control for the use of the
real-world setups described in this paper.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] E. Schuitema, M. Wisse, and P. Jonker, “The design of ’LEO’: a 2d
bipedal walking robot for online autonomous reinforcement learning,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst., Taipei, Taiwan,
October 2010, pp. 3238–3243.

[3] J. Kober and J. Peters, “Reinforcement learning in robotics: a survey,”
in Reinforcement Learning: State of the Art, M. Wiering and M. van
Otterlo, Eds. Berlin, Germany: Springer Verlag, 2012, pp. 579–610.

[4] F. Stulp and O. Sigaud, “Robot skill learning: From reinforcement
learning to evolution strategies,” Paladyn, vol. 4, no. 1, pp. 49–61, 2013.

[5] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” ACM SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[6] K. Olukotun and L. Hammond, “The future of microprocessors,” ACM
Queue, vol. 3, no. 7, pp. 26–29, 2005.

[7] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a real
robot using hierarchical reinforcement learning,” Robot. Auton. Syst.,
vol. 36, no. 1, pp. 37–51, 2001.

[8] T. Martı́nez-Marı́n and T. Duckett, “Fast reinforcement learning for
vision-guided mobile robots,” in Proc. IEEE Int. Conf. Robotics and
Automation, Barcelona, Spain, April 2005, pp. 4170–4175.

[9] H. Benbrahim and J. Franklin, “Biped dynamic walking using reinforce-
ment learning,” Robot. Auton. Syst., vol. 22, no. 3, pp. 283–302, 1997.

[10] W. Smart and L. Pack Kaelbling, “Effective reinforcement learning for
mobile robots,” in Proc. IEEE Int. Conf. Robotics and Automation,
Washington, DC, May 2002, pp. 3404–3410.

[11] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of
actor-critic reinforcement learning: Standard and natural policy gradi-
ents,” IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 42, no. 6, pp.
1291–1307, November 2012.

[12] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, and E. Schuitema,
“Efficient model learning methods for actor-critic control,” IEEE Trans.
Syst. Man Cybern. B, Cybern., vol. 42, no. 3, pp. 591–602, June 2012.

[13] R. S. Sutton, “Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming,” in Proc. Int. Conf.
Machine Learning, Austin, TX, June 1990, pp. 216–224.

[14] R. Hafner and M. Riedmiller, “Neural reinforcement learning controllers
for a real robot application,” in Proc. IEEE Int. Conf. Robotics and
Automation, Roma, Italy, April 2007, pp. 2098–2103.

[15] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” Auton. Robot., vol. 27, no. 1, pp. 55–73,
2009.

[16] T. Hester and P. Stone, “Learning and using models,” in Reinforcement
Learning: State of the Art, M. Wiering and M. van Otterlo, Eds. Berlin,
Germany: Springer Verlag, 2012, pp. 111–141.

[17] T. Lampe and M. Riedmiller, “Approximate model-assisted neural fitted
q-iteration,” in Proc. Int. Joint Conf. Neural Networks, Beijing, China,
July 2014, pp. 2698–2704.

[18] B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber, “Quasi-online
reinforcement learning for robots,” in Proc. IEEE Int. Conf. Robotics and
Automation, Orlando, FL, May 2006, pp. 2997–3002.

[19] T. Hester and P. Stone, “TEXPLORE: real-time sample-efficient rein-
forcement learning for robots,” Mach. Learn., vol. 90, no. 3, pp. 385–
429, 2013.

[20] R. M. Kretchmar, “Reinforcement learning algorithms for homogenous
multi-agent systems,” in Proc. Workshop Agent and Swarm Program-
ming, Cleveland, OH, October 2003, pp. 1–10.

[21] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White,
and D. Precup, “Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction,” in Proc. Int.
Conf. Autonomous Agents and Multiagent Syst., Taipei, Taiwan, May
2011, pp. 761–768.

http://mlg.eng.cam.ac.uk/pilco/release/pilcoV0.9.zip

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 00, NO. 00, XXXXXX 0000

[22] T. Tateyama, S. Kawata, and Y. Shimomura, “Parallel reinforcement
learning systems using exploration agents and Dyna-Q algorithm,” in
SICE Annu. Conf., Takamatsu, Japan, September 2007, pp. 2774–2778.

[23] V. Palmer, “Scaling reinforcement learning to the unconstrained multi-
agent domain,” Ph.D. dissertation, Texas A&M University, 2007.

[24] Y. Li and D. Schuurmans, “Mapreduce for parallel reinforcement
learning,” in Proc. European Workshop Reinforcement Learning, Athens,
Greece, September 2011, pp. 309–320.

[25] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement
learning with function approximation,” in Proc. Int. Conf. Machine
Learning, Helsinki, Finland, July 2008, pp. 664–671.

[26] J. S. Albus, “A new approach to manipulator control: the cerebellar
model articulation controller (CMAC),” J. Dyn. Sys., Meas., Control,
vol. 97, no. 3, pp. 220–227, 1975.

[27] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less real time,” Mach. Learn., vol. 13, no. 1,
pp. 103–130, 1993.

[28] R. Sutton, C. Szepesvári, A. Geramifard, and M. Bowling, “Dyna-style
planning with linear function approximation and prioritized sweeping,”
in Proc. Conf. Uncertainty in Artificial Intell., Helsinki, Finland, July
2008, pp. 1–9.

[29] A. L. Strehl and M. L. Littman, “An empirical evaluation of interval
estimation for markov decision processes,” in Proc. IEEE Int. Conf.
Tools with Artificial Intell., Boca Raton, FL, November 2004, pp. 128–
135.

[30] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” Artif. Intell. Rev., vol. 11, no. 1, pp. 11–73, 1997.

[31] ——, “Locally weighted learning for control,” Artif. Intell. Rev., vol. 11,
no. 1, pp. 75–113, 1997.

[32] J. A. Bagnell and J. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods,” in Proc. IEEE Int. Conf.
Robotics and Automation, Seoul, Korea, May 2001, pp. 1615–1620.

[33] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, “An
optimal algorithm for approximate nearest neighbor searching in fixed
dimensions,” J. ACM, vol. 45, no. 6, pp. 891–923, 1998.

[34] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural
Comput., vol. 14, no. 3, pp. 641–668, 2002.

[35] M. Deisenroth and C. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in Proc. Int. Conf. Machine Learn-
ing, Bellevue, WA, June/July 2011, pp. 465–472.

[36] C. Atkeson and J. Santamaria, “A comparison of direct and model-
based reinforcement learning,” in Proc. IEEE Int. Conf. Robotics and
Automation, Albuquerque, NM, April 1997, pp. 3557–3564.

[37] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” J. Mach. Learn. Res., vol. 6, pp. 503–556, April
2005.

[38] M. Riedmiller, “Neural fitted Q iteration – first experiences with a data
efficient neural reinforcement learning method,” in Proc. European Conf.
Machine Learning, Porto, Portugal, October 2005, pp. 317–328.

[39] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,” Mach.
Learn., vol. 49, no. 2–3, pp. 161–178, 2002.

[40] S. Adam, L. Busoniu, and R. Babuska, “Experience replay for real-time
reinforcement learning control,” IEEE Trans. Syst. Man Cybern. C, Appl.
Rev., vol. 42, no. 2, pp. 201–212, March 2012.

[41] H. van Seijen, H. van Hasselt, S. Whiteson, and M. Wiering, “A
theoretical and empirical analysis of expected sarsa,” in Proc. IEEE
Symp. Adaptive Dynamic Programming and Reinforcement Learning,
Nashville, TN, March/April 2009, pp. 177–184.

[42] L. Busoniu, R. Babuska, B. de Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximation.
Boca Raton, FL: CRC Press, 2010.

[43] W. Zhong and H. Rock, “Energy and passivity based control of the
double inverted pendulum on a cart,” in Proc. IEEE Int. Conf. Control
Applications, Mexico City, Mexico, September 2001, pp. 896–901.

[44] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE Trans. Syst.
Man Cybern., vol. 13, no. 5, pp. 834–846, September/October 1983.

[45] D. Silver, R. Sutton, and M. Müller, “Temporal-difference search in
computer go,” Mach. Learn., vol. 87, no. 2, pp. 183–219, 2012.

[46] H. Meijdam, M. Plooij, and W. Caarls, “Learning while preventing
mechanical failure due to random motions,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Syst., Tokyo, Japan, November 2013, pp. 182–
187.

Wouter Caarls received his M.Sc. degree (with
honors) in artificial intelligence from the Univer-
sity of Amsterdam, Amsterdam, The Netherlands.
He obtained a Ph.D. from the Delft University of
Technology, Delft, The Netherlands on the subject
of the automatic optimization of a parallel computer
architecture for smart cameras. He is currently a
visiting researcher at the Postgraduate Program in
Informatics, Federal University of Rio de Janeiro,
Brazil, investigating the applications of reinforce-
ment learning in robotics and computer networks.

His research interests include robotics, machine learning, optimization, paral-
lel algorithms, and image processing. Dr. Caarls is a member of the IEEE.

Erik Schuitema received the M.Sc. degree (with
honors) in applied physics from the Delft University
of Technology, Delft, The Netherlands, in 2006.
He obtained the Ph.D. degree in the Department
of Biomechanical Engineering, Delft University of
Technology, on real-time reinforcement learning
techniques for the control of a real bipedal walking
robot. His research interests include intelligent hard-
ware and software for robotics, machine learning,
autonomous agents, and software engineering.

	Introduction
	Related work
	Methods
	Reinforcement Learning
	Linear function approximation
	DYNA
	Locally weighted regression
	Sparse online Gaussian processes

	Algorithms
	Parallelization
	Parallel DYNA
	Parallel locally linear fitted Q-iteration

	Systems
	Simulation
	Pendulum swing-up
	Two-link manipulator
	Cart-double-pole balancing
	Cart-pole swing-up

	Real-world
	Pendulum swing-up
	Two-link manipulator

	Experiments
	Parallel efficiency
	Performance evaluation
	Model choice
	Choice of start state
	Reference rewards

	Validation
	Conclusions
	References
	Biographies
	Wouter Caarls
	Erik Schuitema

