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Abstract—In this paper we simultaneously optimize the pa-
rameters describing the morphology of a robot arm and the
parameters of its nonlinear controller. A novel concept of a pick-
and-place robot arm is considered, which is called the resonating
arm (RA). It uses a nonlinear spring mechanism to generate
pick-and-place motions without the need for powerful actuators.
This improves energy efficiency, cost and weight of the robot arm.
Because of the complex interactions of the spring mechanism and
the controller, we use evolutionary co-optimization to optimize
the RA system as a whole. The results reveal that evolutionary
co-optimization yields near optimal solutions for a 1 degree of
freedom (1-DOF) RA, which require 43% less torque than the
solution found through a separate optimization of the system and
the control parameters. In case of a 2-DOF RA, evolutionary co-
optimization resulted in credible solutions as well, but with less
consistency.

I. INTRODUCTION

The Resonating Arm (RA, [1]) is a novel concept for a

robot arm with low-power actuators designed for pick-and-

place tasks. These tasks are in general highly repetitive, which

favors the use of robots above human workers. Therefore

robot arms are already widely used to perform pick-and-place

tasks in numerous industries (e.g. the food handling industry).

These robot arms are typically equipped with high-power

actuators to meet the fast handling speeds required by the

industry, making them inefficient and unsafe. The resonating

arm is being developed to reduce this need for heavy, powerful

actuators while being fast enough to be used in an industrial

environment.

In order to reduce the actuator power, the resonating arm

uses a spring mechanism to move the arm between the pick

and place areas. An electric actuator is only used to overcome

friction and to perform precise placement within those areas.

The spring mechanism has many parameters, making it hard

to optimize by hand. Furthermore, the performance can only

be measured when the arm is properly controlled, and the

control parameters depend on the mechanism. In this paper, we

therefore use evolutionary co-optimization to simultaneously

optimize the control and system parameters.

We will start by reviewing related work in the areas of effi-

cient robotic arms and evolutionary optimization in Section II.

Next, we will explain the resonating arm mechanism and the

optimization methods in Sections III and IV, respectively. The

results are presented in section V and discussed in Section VI.

Finally, we conclude with Section VII.

Upper arm

Large pulley 

Small pulley

Timing belt

Spring

Motor 1

Lower arm

Motor 2

Fig. 1. A drawing of the controlled mechanical system, called resonating arm,
which will be optimized in this research. An important part of the resonating
arm is its spring mechanism, represented by the two pulleys, the spring and
the timing belt connecting them. Furthermore the systems consists of an upper
and lower arm with two motors to control both degrees of freedom. From [1].

II. RELATED WORK

The idea of exploiting the natural motions of a system has

been applied to manipulators before. Williamson investigated

control strategies for natural oscillating arms [2]. However,

those oscillations were not created mechanically, and therefore

did not decrease the required actuator power. The work most

strongly related to the resonating arm we consider in this paper

is that by Babitsky and others [3] who researched mechanically

resonant robotic systems and designed mechanisms for those

robots. The drawback of these mechanisms is that they lock

into place at pre-determined positions. For practical applica-

bility, there is a need for freedom to deviate from the pre-

determined locking positions.

It appears that evolutionary co-optimization [4], [5] has

mainly attracted the attention of researchers in the field of

autonomous robots, while its benefits are generally applicable

to the development of other types of robots, such as manipu-

lators. The software Darwin2K by Leger [6] is one of the few

applications concerning the optimization of robot manipula-

tors. This software is able to synthesize the robot morphology
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Fig. 2. The spring mechanism driving the resonating arm. This mechanism
consists of two pulleys interconnected by a timing belt and a spring. The
most important variables describing this mechanism are the angular position
of the large pulley Θ and the morphological parameters l0 r1, r2, a and k,
respectively the original length of the spring, the radii at which the spring
ends are attached to the large and small pulley, the ratio between the outer
radii of the pulleys (R1/R2) and the spring constant.

and optimize the system and control parameters. In order to

keep the complexity of the problem manageable, simple local

control strategies (i.e. PID) are applied. Unfortunately, these

simple local controllers also limit the search for an optimal

solution. Therefore this research concerns the optimization of

more complex and global controllers.

III. RESONATING ROBOT ARM

The reduction of actuation power without a loss of handling

speed can only be achieved by designing a clever mechanism

that does not rely on actuation power to generate the high

accelerations needed; the RA is such a mechanism.

The basic layout of the RA is equal to a SCARA type robot.

It has a parallel-axis joint layout in which the arms can move in

the X-Y plane but are rigid in the Z-direction. Figure 1 shows

a drawing of the RA with the most important parts of the

system indicated. The core of the RA is a spring mechanism

that consists of a spring attached to two pulleys with different

diameters, connected by a timing belt which creates a ratio

between the angular displacement of both pulleys. The upper

arm is connected to the larger pulley, which is driven by a

motor for positioning. The lower arm is connected to the upper

arm and actuated by a second motor which is placed at the

pivot point between both arms. The end effector is not shown,

but would be located at the end of the lower arm.

In Figure 2 the spring mechanism itself is depicted together

with its defining system parameters. The mechanism creates

a nonlinear relation between spring elongation and angular

position of the upper arm. Figure 3 plots the relation between

the potential energy and the angle. The morphological values

used are the ones used in the design of the first prototype [1],

namely: r1 = 0.1 m, r2 = 0.02 m, a = 5, l0 = 0.1 m and

k = 150 N/m. Also the desired pick angle Θpick = −0.8 rad

and desired place angle Θplace = 0.8 rad of the prototype are

indicated.

Two specific characteristics of the spring mechanism can be

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

Θpick Θplace

Theta [rad]

E
n
e
rg

y
 [
J
]

Fig. 3. Potential energy as a function of angle Θ of the upper arm
for morphological values of the prototype. The spring mechanism in the
resonating arm yields the two flat plateaus in the potential energy curve
near the desired pick angle Θpick = −0.8 rad and desired place angle
Θplace = 0.8 rad at which energy is stored in the system, but the derivative
of the potential energy curve is close to zero. This implies that at these angles
the torque applied by the spring mechanism is close to zero. This is ideal when
the system has to be kept at these positions using a low-power actuator, with
a limited maximum torque.

observed in Figure 3. First we see the expected behavior that

the potential energy increases when the system moves away

from the rest position at Θ = 0 due to the spring elongation.

But more important are the two plateaus in the potential energy

curve at which the change in potential energy is relatively

small compared to angles outside these plateaus. At these

angles the derivative of potential energy Ep over the angle Θ
(which is equal to the spring mechanisms torque τs) is close to
zero. This enables the system to efficiently stay at the pick or

place positions until a product is fully grasped or placed and

then use the stored energy to quickly accelerate the system in

the direction of the other pick or place position.

IV. METHODS

We use fuzzy control and evolutionary optimization to find

the best controller and morphological parameters of the spring

mechanism with regard to the maximum actuator torque that is

needed to stay at the pick and place locations (torque-to-stay),

as well as move between them (torque-to-move).

A. Fuzzy control

In order to control the resonating arm system we require

a nonlinear feedback controller. Nonlinear since the RA is a

highly nonlinear system for which linear control approaches

will not be able to generate an optimal control. And feedback

is required to control the system from different starting po-

sitions. We use fuzzy control [7] because it makes it much

easier to understand the control behavior and to distill general

control rules. This also makes it possible to incorporate prior

knowledge into the controller to initialize the optimization and

increase the speed of convergence.
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Fig. 4. Top view of the resonating arm model with the two degrees of freedom
of the system Θ1 and Θ2 and the torques acting on the joints with τ1 and
τ2 the actuator torques and τs the torque caused by the spring mechanism.

We use fuzzy variants of the linear proportional-derivative

(PD) controllers used in many control applications, which

determine their control output u based on the error e and

the error derivative ė

u = f(x) (1)

with

x = [e ė]T (2)

where in fuzzy control the function f(·) is determined by

the fuzzy rules and membership functions, which are to be

optimized in conjunction with the mechanism parameters.

The number of inputs for the controllers is equal to four,

defining the errors between the desired angular positions and

speeds of both arms as

e =

[

e1
e2

]

=

[

Θ1d −Θ1

Θ2d −Θ2

]

(3)

ė =

[

ė1
ė2

]

=

[

Θ̇1d − Θ̇1

Θ̇2d − Θ̇2

]

(4)

where Θ1d, Θ2d, Θ̇1d and Θ̇2d represent the desired angles

and their derivatives, respectively.

The output u is defined as

u =

[

u1

u2

]

=

[

τ1
τ2

]

(5)

with τ1 and τ2 the control torques acting on the upper and

lower arm, see Figure 4.

The e and ė variables are scaled by a factor between 1/3

and 3 to bring the real inputs into the normalized domain used

by the fuzzy controller (between -1 and 1), and to provide

the optimization algorithm with a variable that has a global

influence on the relative widths of all membership functions.

The same holds for the outputs which are also scaled by a

factor between 1/3 and 3.

The positions of the membership functions of the fuzzy

controller are variable and need to be optimized by the EA.

The membership functions are multidimensional Gaussian

functions with zero covariance. Gaussian functions are used

since it has been shown that these yield a good approxima-

tion [8].

Each membership function is associated with a fuzzy rule

that outputs a desired torque vector ω. The outputs of all rules

are combined using the weighted average method:

f(x) =

∑N

j=1
ωj

(

Πk
i=1

µAi
j
(xi)

)

∑N

j=1

(

Πk
i=1

µAi
j
(xi)

) (6)

with

µAi
j
(xi) = exp

(

−
(cij − xi)

2

2(σi
j)

2

)

(7)

where the centres cij , widths σ
i
j and consequent torque vectors

ωj are to be optimized. Note that each rule has its own c and
σ.

B. Evolutionary optimization

The problem considered in this paper is characterized by

its high dimensionality, complexity and constraints causing

a large and nonlinear search space with many peaks and

discontinuities, making it ideally suited for evolutionary op-

timization. We analyze and compare the performance of two

state-of-the-art algorithms, CMA-ES and CoSyNE.

1) CMA-ES: CMA-ES [9] was developed with the idea

that the evolutionary operators of selection, recombination and

mutation implicitly define a distribution from which the next

generation is sampled. Therefore an evolutionary search in

its simplest form can be described by a three step process

of sampling, evaluation and an update of the distribution

parameters.

The sample distribution used in CMA-ES is a multi-variate

normal distribution N (m,C) that is uniquely determined

by its mean value m ∈ R
n and its symmetric positive

definite n × n covariance matrix C. This distribution can be

geometrically interpreted as an iso-density ellipsoid, which

shape is determined by the covariance matrix C. Its position is

determined by the mean valuem around which the distribution

is symmetric.

The mean value m of this distribution is updated after each

generation by selecting the best points from the evaluated

population. The weighted average of these points is then used

to determine the updated mean value m, where the weight

of each point is determined by its ranking position. Also

the covariance matrix C is updated by finding a covariance

matrix that fits the distribution of the best points of the new

populations best. Since CMA-ES uses a non-elitist selection

only the newly created solutions are used for these updates.
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The step-size determines how far new solutions are sampled

from the mean value. This step-size is also automatically up-

dated in CMA-ES by using a cumulative step-size adaptation,

which increases the step-size when the mean vector m is

updated in the expected direction based on the previous update

directions. When this is not the case the step-size is reduced

in order to facilitate a finer search.

2) CoSyNe: CoSyNE [10] belongs to the family of cooper-

ative co-evolutionary algorithms which are inspired by natural

ecosystems where several species cooperate for their survival.

In this class large optimization problems are decomposed

into sub components, which are subject to local evolutionary

processes. This decomposition and evolution of sub solutions

is expected to create EAs which are capable of optimizing

problems with high dimensionality. Since the co-optimization

of control and system parameters often results in high dimen-

sional search spaces, the cooperative co-evolutionary approach

is expected to be beneficial to optimize both the control and

system parameters of the RA.

The cooperating species or sub populations in the CoSyNE

algorithm are the different sub components of a complete

solution. Since the fitness function cannot determine a fitness

score for a single sub component, complete solutions are

assembled using one member from each species. The fitness

scores at the species level is defined in terms of the fitness

of the complete solutions in which the species members

participated. The evolution of each sub population is then

handled independently by a standard evolutionary process of

selection, reproduction, mutation and replacement [22]. To

explain these steps more clearly a pseudo-code of the CoSyNE

algorithm is presented in Table I.

TABLE I
COSYNE ALGORITHM

1: P ← initialize(P 1, P 2, P 3, . . . , Pn) {initialize all n subpopula-
tion with m variables}

2: repeat
3: for j = 1 to m do

4: Pj ← (P 1
j P

2
j P

3
j . . . Pn

j )
5: evaluate(Pj)
6: end for
7: Pparents ← SelectBestQuarter(P )
8: Poffspring ← Offspring(P 1

parents, P
2
parents, . . . , P

n
parents)

9: Pnew ← ReplaceWorstQuarter(P, Poffspring)
10: P ← Permute(P 1

new, P
2
new, P

3
new, . . . , P

n
new)

11: until end criteria

First (line 1), a population P consisting of n sub populations

Pi i = 1, . . . , n is initialized randomly, where n is the

number of variables needed to define a complete solution.

Each sub population is initialized to contain m real numbers

chosen from a uniform probability distribution in the interval

[0, 1]. Starting with these initial sub populations the CoSyNE

algorithm loops through a sequence of generations until the

stopping criteria are met (lines 2-11). Each generation starts by

constructing a complete solution by combining one individual

from each sub population. In CoSyNE this is done by taking

the jth row of the population matrix P (line 4). The complete

solution is now evaluated and in this way a fitness score is

determined for all m combinations (line 5). The fitness score

of an individual is set equal to the fitness score of the complete

solution it was part of. A quarter of the best performing

solutions is selected as parents and used to create offspring

by applying the variation operators mutation and crossover

(line 7-8). The newly created individuals are now used to

replace the worst performing individuals (line 9). In order to

incorporate co-evolution into the algorithm the sub populations

are permuted uniformly so that each individual forms part of a

potentially different solution in the next generation (line 10).

The user-defined parameters of both the CMA-ES and

CoSyNE algorithms are given in Table II

TABLE II
THE USER DEFINED PARAMETERS OF THE COSYNE AND CMA-ES

ALGORITHM.

Parameter CoSyNE CMA-ES

population size 40 40
crossover type uniform -

mutation Gaussian noise (σ = 0.15) -
mutation probability 0.3 -

C. Stepwise optimization

To get a baseline against which to compare the evolutionary

optimization results, we used a stepwise optimization pro-

cedure in which the system parameters and controller are

optimized sequentially. To decouple the two problems, we

optimized the system parameters for minimal torque-to-stay

(flat area around Θplace in Figure 3). The spring constant k
and moment of ineria I0 do not influence this plateau, and

were set at the maximum and minimum bounds, respectively.

The rationale is that a higher spring constant and lower inertia

will decrease the required torque-to-move. It is the maximum

of the torque-to-stay and torque-to-move that is optimized by

the evolutionary algorithm. Table III summarizes the results,

comparing them to the prototype.

TABLE III
STEPWISE OPTIMIZED PARAMETERS DESCRIBING THE DYNAMIC

BEHAVIOR OF THE 1-DOF RESONATING ARM.

Symbol Prototype Optim. Optim. Units

value bounds value

r1 0.1 [0.05− 0.20] 0.20 m
r2 0.02 [0.01− 0.04] 0.0389 m
a 5 [2.5− 10] 5.1153 m/m
l0 0.1 [0.05− 0.20] 0.05 m
k 150 [0− 200] 200 N/m

I0 0.16 [0.16− 0.32] 0.16 Nm2

Torque-to-stay 0.0817 0.0218 Nm

To optimize the controller with respect to the required

torque-to-move, we applied an iterative approach in which a

minimum-time problem is solved [11] for a decreasing set

of control torque bounds. When the control bounds are set

too high the minimal-time problem will yield an optimal

time below the time constraint of 1 second. By iteratively

decreasing the bounds until the optimal time is equal to 1

second the minimal-maximum-torque problem can be solved.
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The stepwise optimization was only performed for the 1-

DOF system (without the lower arm), because the minimum-

time optimal control problem could not be solved analytically

for the 2-DOF case.

V. RESULTS

The goal of the optimization is to find the fuzzy control

and system parameters that minimize the maximum actuator

torque required to perform certain pick-and-place tasks. This

actuator torque should allow the fuzzy controller to move the

system to a predefined region around the place position in

the state space and it should be large enough to stay at all

positions in this region (place range). For the 1-DOF system,

we compare the results to those found using the conventional

stepwise optimization. Unless otherwise indicted, all results

were generated using the CMA-ES algorithm.

A. One degree of freedom

The fitness function used for the optimization of the 1-DOF

RA is shown in Table IV. Before the fitness is determined

using the maximum used torque during the simulation, two

checks are present to make sure that the solutions can still be

given a score when the simulation failed or if the system did

not converge to the desired state after 1 second.

TABLE IV
FITNESS FUNCTION OF THE 1-DOF RA OPTIMIZATION

1: if simulation fails at some time tfail then

2: fitness←
(

1−
tfail

tsimulation

)

+ 2

3: else if error ǫ at tsimulation > allowed error then

4: fitness←
(

1− 1
1+ǫ2

)

+ 1

5: else

6: τm ← max. abs. torque to move from pick
position to place range

7: τp ← max. abs. torque to stay in place
range

8: fitness←
(

1− 1
1+max(τp,τm)

)

9: end if

The evolutionary algorithms optimized the 6 system pa-

rameters and 38 control parameters (7 membership functions)

simultaneously. A first comparison between the co-optimized

solution and the stepwise-optimized solution is presented in

Figure 5, where the dashed lines correspond with stepwise-

optimized solution and the solid lines correspond with the co-

optimized solution. From this figure we have to conclude that

the co-optimized solution is able to use a lower maximum

torque than the stepwise-optimized solution. In fact, when

compared to the stepwise-optimized solution, the co-optimized

solution is able to reduce the required maximum absolute

control torque by 43%, from 1.338 Nm to 0.768 Nm.

Figure 6 shows how this reduction is possible by plotting

the potential energy and torque curves for both the stepwise-

optimized solution and the co-optimized solution. Although

the co-optimized solution uses the nonlinearity of the spring

mechanism to minimize the torque at the place range [Θa,Θb],
it did not minimize these torques to a minimum. Instead the
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Fig. 5. The control output and state response of the solution found by

the evolutionary algorithm starting from [Θinit, Θ̇init] = [−0.85, 0]. The
dashed lines represent the optimal control solution belonging to the stepwise
optimized system. It can be seen that the solution found by the evolutionary
algorithm is able to use a maximum torque, which is less than the solution
found in the stepwise optimization, from this result we can conclude that the
evolutionary algorithm found better system parameter values, which allow a
lower torque.
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(a) Potential energy curve
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(b) Torque curve

Fig. 6. The potential energy and torque curves of the spring mechanism with
parameter values obtained from a stepwise optimization and an evolutionary
optimization. The evolutionary algorithm seems to prefer a bigger torque at
the pick-and-place ranges than the minimized torque found in the stepwise
optimization.

maximum torque at the place range is close to the torque used

to move the system between the pick-and-place positions.

B. Two degrees of freedom

The fitness function used for this optimization is similar

to the one used in the 1-DOF RA optimization, which was

presented in Table IV. The only changes are the fact that

the error now consists of four values and that two torques

are used to move the system from the initial positions to

the desired positions. The maximum of the two torques-to-

move and the torque-to-stay is used to determine the fitness

score, this means that the overall maximum torque used in the

system is minimized and no distinction is made between the

upper and lower arm actuators. The evolved controller had 17

membership functions, resulting in a total of 182 optimization

parameters.
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Fig. 7. Comparison of torque-to-stay and torque-to-move for the 2-DOF
system

While in the 2-DOF case we do not have a baseline to

compare against, we can still assess the performance of the

optimization by looking at Figure 7(a), which plots the control

output for one of the initial states. The maximum absolute

torque used during the pick-and-place movement is 1.1 Nm

and the maximum absolute torque-to-stay at the pick-and-place

locations is also approximately 1 Nm as shown in Figure 7(b).

The fact that these torques have the same size indicates that

the optimization did indeed optimize the system and control

parameters to an internally consistent solution, by finding the

right balance between the torque-to-move and the torque-to-

stay.

C. Comparison of CMA-ES and CoSyNe

In Figure 8 the convergence of both algorithms is pre-

sented when optimizing the 1-DOF RA with both types of

controllers. The dotted lines indicate that the average fitness

does not equal the average maximum torque used since some

of the simulations obtained a penalty for not converging to

the desired states. When the convergence line is solid the

values correspond with the average maximum torque of all

optimization runs.

Figure 9 shows the same data for the 2-DOF case. Although

the consistency of the solutions found after 10 000 generations

is considerably lower than the 1-DOF case, it can also be seen

that after 5000 generations already 50% of the optimization

runs yielded in solutions with a fitness score close to the final

fitness score.

For all experiments the best results were found by the CMA-

ES algorithm and it therefore appears to be the most effective

algorithm for the optimization of nonlinear controllers and

system parameters.

VI. DISCUSSION

A. One degree of freedom

It was shown that the co-optimized solution was able

to decrease the overall maximum torque by increasing the

torques at the place range. The co-optimized solution uses

the increased spring mechanism torques to accelerate the arm

directly from the start and therefore less actuation torque is

needed to perform the movement in time. This is a valuable
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(b) Initial state: Θ = −0.75, Θ̇ = 0

Fig. 10. The control output for the 1-DOF RA starting from the outer two
initial states. The dashed lines represent the optimal control solution derived
in Section IV-C. From the plots we can see that the evolutionary algorithm
converged to a control solution at which an equal torque is used for both initial
states, this torque equals the minimal torque needed to bring the system from
the furthest state to the desired state in the desired time as can be seen in (a).
In (b) the used torque is higher than the optimal maximal torque and therefore
the system converges faster.

insight, which was not discovered before the evolutionary co-

optimization was applied.

Eventually, this insight could also have been found through

a further analysis of the mechanism. However, even when this

was the case, this would result in an optimization problem

that is difficult to solve in a stepwise optimization. This is

caused by the fact that the optimal torque at the pick-and-

place positions has to be equal to the optimal torque used

to move between the pick-and-place positions. Therefore the

dependency of the system parameters on the control solution

is even stronger, which would have to be solved through

a cumbersome iterative process of system optimization and

control optimization.

Another effect of the necessity to balance the torques can

be seen by looking at the control solutions for different initial

states. In Figure 10 the actual control outputs and the optimal

control outputs are shown. It can be seen that for both initial

states the same maximum torque is used, even though a lower

torque would have been able to bring the system to the desired

state within the time constraint of 1 second. Moreover, the

maximum torque used for all initial states is about equal to

the optimal torque needed to bring the system from the furthest

state to the desired state.

The reason why the EA only optimized the control for the

furthest initial state can be found by analysing the optimization

goal stated at the beginning of this experiment. This goal

demands a minimized actuator torque that allows the controller

to move the system to a predefined region in the state space

and is at the same time large enough to keep the system at all

positions in this predefined region. The initial state furthest

from the desired region requires the highest actuator torque

and the EA will reduce this torque-to-move by increasing the

torque needed to stay at the place range. The minimal actuator

torque for that initial state is found when the torque-to-move

and the torque-to-stay have the same size. This torque-to-stay

will now dominate the minimal actuation torque of the other

initial states, and therefore a further minimization of their

torque-to-move does not influence the optimization outcome.

After optimizing the fuzzy controller this resulted in equal
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Fig. 8. The convergence of the 1-DOF RA experiment presented in box plots. The plotted line represents the median of 30 runs and the box represents the
lower quartile and the upper quartile, the whiskers show the smallest and largest sample. Although CoSyNE shows a faster convergence initially, the CMA-ES
algorithm is able to converge to a better solution.
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(b) CoSyNE

Fig. 9. The convergence of the 2-DOF RA experiment presented in box plots. The plotted line represents the median of 30 runs and the box represents the
lower quartile and the upper quartile, the whiskers show the smallest and largest sample. As in the 1-DOF experiments, CoSyNE shows a faster convergence
initially, while the CMA-ES algorithm is able to converge to a better solution.

torques-to-move for all initial states.

From a practical point of view this outcome is acceptable

since the highest minimal maximum torque for one of the

initial positions will set the requirements for the actuators used

in the robot arm.

B. Two degrees of freedom

When looking at Figure 7(b), the torque curve correspond-

ing to the 2-DOF system is plotted and compared with that

of the 1-DOF system. Here it can be seen that the level

of potential energy stored in the optimized 2-DOF RA is

considerably lower than the potential energy stored in the

optimized 1-DOF RA. This may be the result of a sub optimal

convergence, but it is also possible that a higher level of

potential energy will not allow a lower torque-to-move. This

latter explanation finds support in the findings of Plooij using

the original prototype [1], who observed that the sudden

acceleration of the upper arm caused by the spring mechanism

increases the torque required to control the lower arm.

C. Comparison of CMA-ES and CoSyNe

The best solutions for both the 1-DOF and 2-DOF system

were obtained using the CMA-ES algorithm. The convergence

of the CMA-ES algorithm to lower torques can be explained

by the fact that the CMA-ES algorithm seems to be better in

optimizing the system parameters. In Figure 11 the normalized

parameter values are plotted and one can see that the CMA-

ES algorithm is constantly finding better systems while the

CoSyNE algorithm changes the best found system parameters

less often. This is assumed to be the result of the adaptive

step size used in the CMA-ES algorithm, which allows the

algorithm to change the system parameters more gradually.

In Figure 12(a) the potential energy curves corresponding to

the different system parameter solutions found by the CMA-

ES and CoSyNE algorithm for the 1-DOF RA are presented.

This plot shows that the CMA-ES algorithm gives a more

consistent convergence of the system parameters than the

CoSyNE algorithm. For the 2-DOF RA this consistency is

lower as can be seen in Figure 12(b), however the CMA-ES

algorithm is still better than the CoSyNE algorithm in reducing

the slope of the potential energy curve in the place range,

which might explain why it is able to reduce the torque further

than the CoSyNE algorithm.
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(b) System parameters 1-DOF - CMA-ES

Fig. 11. The normalized system parameters of one optimization run plotted over time where 0 represents the lower bound and 1 the upper bound. The figures
show that the CMA-ES algorithm is able to give a faster convergence to a system parameter solution while the CoSyNE algorithm is changing the system
parameters with bigger steps and does not converge as quickly.
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(b) 2-DOF RA

Fig. 12. The potential energy curves of all 30 runs found after optimizing the 1-DOF resonating arm (a) and the 2-DOF resonating arm (b) with the CMA-ES
and CoSyNE algorithm. We can see that the CMA-ES algorithm gives more consistent results in comparison to the CoSyNe algorithm when optimizing the
1-DOF resonating arm. If we consider the results of the 2-DOF resonating arm we see that the both algorithms lacked consistency but the CMA-ES algorithm
performed better in shaping the potential energy curve to decrease the torques at the pick-and-place positions.

VII. CONCLUSION

This paper introduced the use of evolutionary co-

optimization of control and system parameters in the de-

velopment of the Resonating Arm (RA); a novel concept

for a low-power pick-and-place robot arm. We conclude that

evolutionary co-optimization is an effective approach to find

near optimal solutions for the RA with one degree of freedom

(1-DOF). The 1-DOF RA solution found through evolutionary

co-optimization required 43% less torque to perform the pick-

and-place tasks when compared to the stepwise optimized

solution. However more research is needed to effectively use it

in the optimization of the 2-DOF RA, where the results were

less consistent. Between the two EAs, CMA-ES yielded the

best and most consistent solutions for all experiments.
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