
Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

Architecture Study for Smart Cameras

Harry Broers1, Wouter Caarls2, Pieter Jonker2, Richard Kleihorst3

1 Philips Applied Technologies, Vision, Optics & Sensors, Eindhoven,
5600 MD, The Netherlands

2 Delft University of Technology, Quantitative Imaging, Delft, 2628 CJ, The Netherlands
3 Philips Research, Digital Design and Test, Eindhoven, 5656 AA, The Netherlands

email: harry.broers@philips.com

Summary

Embedded real-time image processing is widely used in many applications, including
industrial inspection, robot vision, photo-copying, traffic control, automotive control,
surveillance, security systems and medical imaging. In these applications, the size of
the image can be very large, the processing time should often be small and real-time
constraints should be met. Starting in the 1980's, many parallel hardware architectures
for low-level image processing have been developed. They range from frame-grabbers
with attached Digital Signal Processors (DSPs), to systolic pipelines, square and linear
single-instruction multiple-data stream (SIMD) systems, SIMD pyramids, PC-clusters,
and since a number of years, smart cameras. As processors are becoming faster,
smaller, cheaper, and more efficient, new opportunities arise to integrate them into a
wide range of CMOS processor devices. Since there are so many different applications,
there is no single processor that meets all the requirements all applications. The
processing done on a smart camera has very specific characteristics. On one hand,
low-level image processing operations such as interpolation, segmentation and edge
enhancement are local, regular, and require vast amounts of bandwidth. On the other
hand, high-level operations like classification, path planning, and control may be
irregular, consuming less bandwidth. In this paper we will focus on the range of smart
cameras of the Philips laboratories and its software support for easy programming that
were partly developed in close co-operation with the SmartCam [1] project.

1 Introduction

The SmartCam project investigates how a set of application-specific processors can be
generated for intelligent cameras using design space exploration (the hardware
framework), and how we are able to schedule the inherent data and task parallelism in
an application in such a way, that a balance is found for both data and task parallel
parts of the application software (the software framework). The found schedule is
optimal for a certain architecture description. For the selection of the best architecture in
combination with the best schedule, one can cycle through design space exploration
and scheduling.
Developing embedded parallel image processing applications is usually a very
hardware-dependent process, requiring deep knowledge of the processors used. It is
possible to explore parallelism along three axes: data-level parallelism (DLP),
instruction-level parallelism (ILP) and task-level parallelism (TLP). Consequently one

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

can encounter one or more of these processors in a smart camera. For the software this
means that if the chosen hardware does not meet the requirements, the application
must be rewritten for a new platform. These problems can be avoided by encapsulating
the parallelism. In the SmartCam project, algorithmic skeletons [2] are used to express
the data parallelism inherent to low-level image processing. But, since different
operations (low, intermediate and high level image processing) run best on different
kinds of processors, we need to exploit task parallelism as well. For this an
asynchronous remote procedure call (RPC) system is used, which was optimized for
low-memory and sparsely connected systems such as the Philips laboratories line of
smart cameras. The software framework eventually uses a normal C-interface to the
user in which the skeleton calls are implicitly parallelized and pipelined.

The structure of this paper is as follows: section 2 reviews some related work. Section 3
discusses and profiles smart camera applications. Section 4 describes our smart
camera architecture and characteristics. Section 5 describes our programming
environment and section 6 discusses some optimizations. Section 7 presents some
results from our system and finally section 8 draws conclusions and points to future
work.

2 Related Work

Because of the increased power and area efficiency, SIMD arrays, and in particular
linear processor arrays (LPAs), are still frequently used in embedded applications.
Vision accelerator boards are employed in real-time control systems where there is
enough room to have a workstation. They contain LPAs (IMAP-CE [3]), DSPs (FUGA
[4]), or GP processors (GenesisPlus [5]). The IMAP-CE uses a data-parallel C
extension called 1DC [6] to program the LPA, while the FUGA and GenesisPlus are
programmable in standard C++. All boards provide optimized library routines for
common image processing operations. In addition, the GenesisPlus uses the library
routines to interface with a separate neighborhood processor as well. The use of an
explicitly data parallel language makes the IMAP-CE slightly more difficult to program,
but also potentially faster. It occupies a place between assembly language, which is
always fastest but not realistically used by image processing researchers, and a library-
only based approach, which may shield the programmer too much to make any
optimizations. It seems that a library-based system in which the user can descend to a
(parallel) programming level, if necessary, is the best approach.

For the more embedded market, with a need to be very small and power efficient,
cameras that integrate sensing and processing are emerging (figure 1). Again, DSP
(Vision Components [7], iMVS [8]) and GP (Legend [9], Inca 311 [10], mvBlueLYNX
[11]) solutions are often used, but single chip LPAs (Xetal [12], added to Inca 311) and
even integrated sensor/LPA chips (MAPP2500 [13]) exist as well. Again, all systems are
programmable using an image acquisition and processing library, but the single chip
LPAs, because of the simplicity of their processing elements, cannot easily be
programmed in C. Xetal tries to remedy this by providing a C++-like language called
XTC, while the MAPP2500 avoids the problem altogether by only providing a few

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

algorithms specific to the expected application
domain (range imaging). Two of the smart
cameras, Inca311 and Legend, are also
programmable using graphical programming
languages [14]. Both are targeted at industrial
inspection, and allow novices in the field of
image processing to graphically connect
algorithms like sub-pixel edge detection, angle
measurements and template matching. Efforts
have been made to put such a user interface
above a library-based approach, providing
another level of abstraction in a single
framework.

3 Application Profiling

The optimal smart camera architecture mainly depends on its application. Each
application dictates the type, order and intensity of image processing operations.
Consequently, the architecture needs to be scaled up or down. To a varying degree, all
application segments look for better performance at lower cost and lower power
consumption.

3.1 Mobile-multimedia Processing

This class of applications is characterized by low-cost, moderate computational
complexity and low power. The application can usually live with reduced quality of
services, e.g., lower-frame rate and compressed video streams. The objective from the
point of view of product manufacturers is cost reduction, which translates to reduction in
silicon area and power-efficient computation. The latter objective can often be
compromised for the former since mobile devices are active for a short period of time
compared to standby duration and the battery energy is wasted mainly in the standby
phase.
The computational complexity for this class of applications varies from 300 MOPs for
basic camera pre-processing for image resolutions of 640*480 at 30 frames per second
(fps) to 1.5 GOPs for more complex pre-processing including auto white-balance,
exposure time control (about 150 operations per pixel). In future, the computational
complexity will increase, because the tendency in mobile video is to increase
resolutions and frame rates, combined with more complex applications.

3.2 Intelligent Interfaces and Home Robotics

This class of applications corresponds to emerging house robots with vision features.
Typical examples include intelligent devices with gesture and face recognition [15],
autonomous visual guidance for robots, and smart home surveillance cameras. These
devices cover the medium-cost range. From a user point of view, the response times
and accuracies of the intelligent devices are of high importance and imply faster burst

Figure 1: Philips smart camera product line

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

performance. They need to operate in uncontrolled environments (i.e. varying light
conditions), and smarter (complex) algorithms are needed to achieve the desired
performance. The power aspect remains an issue especially in standalone modules
such as battery powered surveillance robots.
Because of the extra intelligence needed in this class of applications, the number of
operations per pixel is in the order of 300 or more. This translates to more than 3 GOPs
for a 30 fps VGA size video stream. Even though the devices can exhibit long idle times
until they are excited by an event, e.g., an intruder in a scene, in their active duration
the same degree of performance is required to guarantee real-time behavior.

3.3 Industrial Vision

Unlike the previous two cases, applications in this segment are cost-tolerant and more
emphasis is given in achieving top-performance sometimes at a given power budget.
The emergence of smart cameras has made it possible for various industrial
applications to replace large expensive PC based vision systems with compact and light
modules having different vision functionalities.
In this class of applications a number of basic pixel-level operations such as edge
detection, enhancement, morphology, etc. need to be performed. Because of the high
video rates often in excess of 100 fps, the computational complexity is easily more than
4 GOPs.

4 Smart Camera Architecture

In the SmartCam [16] environment, an application designer will be able to generate an
optimal smart camera hardware configuration for his specific domain, based on his
application code and various constraints such as size, cost and power consumption.
However, for this approach to be feasible it is necessary to restrict the search space by
imposing an architecture template. Based on the previous expertise and projects our
architecture template will consist of a sensor, reconfigurable logic (i.e. FPGA) to
interconnect the sensor and processors and to perform some fixed applications such as
lens correction, one or more LPA(s), instruction level parallel processor(s), memories,
and communications peripherals. The general template can be parameterized with
regard to resolution, number of processing elements (PEs) and PE functionality, data
width, the amount and type of functional units, etc.

The choice of an LPA is simple, because it is perfectly suited for the data parallelism
inherent to low-level image processing operations. ILP processors, such as very long
instruction word (VLIW) and superscalar processors can execute multiple independent
instructions per cycle, exploiting a finer-grained level of parallelism than LPAs. This is
necessary because higher-level vision processing tasks are too irregular to execute on
LPAs. Figure 2 depicts the architecture of a Philips smart camera based on the
architecture template discussed before. The architecture uses a Xetal as LPA
processor. The Xetal, a SIMD processor, includes 320 processing elements, each with
one ALU. It is suitable for many low-level operations to exploit DLP. Trimedia [17] is a

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

VLIW example; it can execute five operations per cycle. It is suitable for high-level
operations to exploit ILP.

VGA

Driver

EPROM

I/O
FireWire
RS232

SDRAM

FLASH
Memory

Sensor

Xetal
(LPA)

Trimedia

(ILP)

FPGA

External
Memory

Figure 2: Philips smart camera architecture

Since the architecture comprises reconfigurable logic, it is possible to change the
architecture depending on the application. The Philips RoboCup team (autonomous
soccer robots) [18] uses a color vision system for localization of the ball, goals and
players in the field (see figure 3a).

Figure 3: a) Color segmented image of Philips RoboCup vision system, b) Contour segmented image of
industrial application

The application can be split up in different parts like color segmentation and object
detection. The partitioning of the application onto the architecture is shown in figure 4a.
In industrial applications, contour information is often used to inspect or localize objects
(see figure 3b). The partitioning of the application is illustrated in figure 4b. Notice that in
both cases the FPGA is also used to order (run length encoding and edge linking) the
data from Xetal in such a way that the TriMedia can process it further with minimal
effort.

TriMedia FPGA Xetal

Acquire Image Color
preprocessing

Color
segmentation

Run length
encoding

Blob
analysis

Object
recognition

(a)

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

FPGA Xetal TriMedia FPGA

Acquire Image Lens Distortion
Correction

Edge
Detection

Edge
Linking

Contour Feature
Extraction

Object
Localisation

(b)

Figure 4: Partitioning examples of the vision application on processing elements of the architecture: a)
Blob-based RoboCup color application, b) Contour-based industrial application

5 Programming

Our programming environment [16] is based on C, to provide an easy migration path. In
principle, it is possible (although slow) to write a plain C program and run it on our
system. In order to exploit concurrency, though, it is necessary to divide the program
into a number of image processing operations, and to apply these using function calls.
Parts of the program, which cannot easily be converted, can be left alone unless the
speedup is absolutely necessary. The main program, which calls the operations and
includes the unconverted code, is run on a control processor, while the image
processing operations themselves are run on the coprocessors that are available in the
system (the control processor itself may also act as a coprocessor). Only this main
program can make use of global variables; because of the distributed nature of the
coprocessor memory, all data to and from the image processing operations must be
passed using parameters.

5.1 Within-operation parallelism

The main source of parallelism in image processing is the locality of pixel-based
operations. These low-level operations reference only a small neighborhood, and as
such can be computed mostly in parallel. Another example is object-based parallelism,
where a certain number of possible objects or regions-of-interest must be processed.
Both cases refer to data parallelism, where the same operation is executed on different
data (all pixels in one case, object pixels or objects in the other).
Data parallel image processing operations map particularly well on linear SIMD arrays.
However, since we don not want the application developer to write a parallel program,
we need another way to allow him to specify the amount of parallelism present in his
operations. For this purpose, we use algorithmic skeletons. These are templates of a
certain computational flow that do not specify the actual operation, and can be thought
of as higher-order functions, repeatedly calling an instantiation function for every
computation. Take a very simple binarization:

for (y=0; y<HEIGHT; y++)

for (x=0; x<WIDTH; x++)
 out[y][x] = (in[y][x]>128);

Using a higher-order function, PixelToPixelOp, we can separate the structure from the
computation. PixelToPixelOp will implement the loops, calling binarize every iteration:

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

int binarize(int value)
return (value>128);

void PixelToPixelOp(int (*op)(int),

int in[HEIGHT][WIDTH], int out[HEIGHT][WIDTH])
for (y=0; y<HEIGHT; y++)

for (x=0; x<WIDTH; x++)
out[y][x] = op(in[y][x]);

PixelToPixelOp(binarize, in, out);

Note that implementing PixelToPixelOp column-wise instead of row-wise - by
interchanging the loops - does not change the result, because there is no way for op to
reference earlier results (side effects are not allowed). It can be said that by specifying
the inputs and outputs of the instantiation function, the skeleton characterizes the
available parallelism. So, by choosing a skeleton, the programmer makes a statement
about the parallelism in his operation, while not specifying how this should be exploited.
This freedom will allow us to optimally map the operation to different architectures.
Another benefit is that the image processing library normally shipped with DSPs and
other image processors is replaced by a skeleton library, which is more general and
thus less in need of constant updates.

5.2 Between-operation parallelism

An image processing application consists of a number of operations described above,
surrounded by control flow constructs. In order to provide an easy migration path, these
operations will be called as higher-order functions, although they are implemented using
source-to-source transformations. Furthermore, because our hardware platform is
heterogeneous, it is important that multiple of these operations are run concurrently, as
not all processors can be working on the same computation. We are therefore using
asynchronous RPC calls as a method to exploit this task-level parallelism.
In RPC, the client program calls stubs that signal a server to perform the actual
computation. In our case, the application is the client program running on the control
processor, while the skeleton instantiations are run on the coprocessors. This alone
does not imply parallelism, because the stub waits for the results of the server before
returning. In asynchronous RPC, therefore, the stub returns immediately, and the client
has to block on a certain operation before accessing the result. This allows the client
program to run concurrent to the server program, as well as multiple server programs to
run in parallel.
However, this still has the disadvantage of requiring the client program to wait on the
completion of an operation before passing its result to another one, even though it never
uses the results itself. To address this problem, we are using MultiLisp's [19] concept of
futures, placeholder objects that are only blocked upon when the value is needed for a
computation. Since simple assignment is not a computation, passing the value to a stub
doesn't require blocking; once the called function needs the information, it will block
itself until the data is available, without blocking the client program:

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

while(1)
Read(in);
PixelToPixelOp(op1, in, inter1);
PixelToPixelOp(op2, in, inter2);
PixelReductionOp(op3, inter1, inter2, out);
/* ... Concurrent client code ... */
block(out);

 /* ... Dependent client code ... */

6 Optimizations

While our futures-like implementation is much less elaborate than MultiLisp's (requiring,
for example, explicit blocks on results, although these could be inserted by the
compiler), it does tackle two other problems: data distribution and memory usage. Both
originate from our architecture template, which features distributed-memory processors
with a relatively low amount of on-chip memory.

6.1 Data distribution

The data generated by most image processing operations is not accessed by the client
program, but only by other operations. This data should therefore not be transported to
the control processor. In order to achieve this, we make a distinction between images
(which are streams of values) and other variables.
Images are never sent to the control processor unless the user explicitly asks for them,
and as such no memory is allocated and no bandwidth is wasted. Rather, they are
transported between coprocessors directly, thus avoiding the scatter-gather bottleneck
present in some earlier work [20]. All other variables (thresholds, reduction results, etc.)
are gathered to the control processor and distributed as necessary. The programmer
can use them without an explicit request.
The knowledge about which data to send where, simply comes from the inputs and
outputs to the skeleton operations, which are derived from the skeleton specification
and are available at run time. Coprocessors are instructed to send the output of an
operation to all peers that use it as an input.

6.2 Memory usage

Our concern about memory usage stems from the fact that especially SIMD LPAs for
low-level image processing may not have enough memory to hold an entire frame, let
alone multiple frames if independent tasks are mapped to it. These processors are
usually programmed in a pipelined way, where each line of an image is successively led
through a number of operations. We would like our system to conserve memory in the
same way, and have therefore specified all our skeletons to read from and write to FIFO
buffers. The distribution mechanism allocates these buffers, and sets up transports as
described above. The operations themselves read the needed information from the
buffer, process it, and write the results to another buffer. A method is provided to signal
that no more data will be forthcoming. This conserves memory, because even a series
of buffers is generally much smaller than a frame. Simultaneously, it hides the origin of

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

the data, making the operations independent of the producers of their input and the
consumers of their output.
The price of all this is that operations must consume data in a certain order, and if the
source operation doesn't generate it in the correct sequence, a reordering operation
must be inserted, typically requiring a frame memory. Fortunately, many low-level
operations can tolerate different orderings, while more irregular operations are generally
run on processors with enough memory.

7 Results

We have implemented a double thresholding edge detection algorithm on our
architecture. In this algorithm, the Bayer pattern sensor output is first interpolated, then
the Sobel X and Sobel Y edge detection filters are run and combined, the output is
binarized at two levels, and finally the high threshold is propagated using the low
threshold as a mask image. This final propagation cannot be run on the Xetal, because
it requires a frame memory.

Table 1. Timing results of the double thresholding edge detection algorithm

Trial Processing time
Single operation (TriMedia) 115 ms
Split operations (TriMedia) 124 ms
Parallel (Xetal + TriMedia) 67 ms

Three situations were compared: one in which the entire algorithm was implemented in
a single operation on the TriMedia, as a baseline for how a sequential application would
be written. Next, the operation was split into tasks as described above, and all tasks
were mapped to the TriMedia; this shows the overhead caused by the task switching
and buffer interaction. Finally, all low-level operations were mapped to the Xetal, while
the propagation and display were mapped to TriMedia; this resembles the final situation
as it would run on our system (see table 1). Because Xetal has only 16 line memories,
the buffers between the filters were one line. On the TriMedia, they were 16 lines, to
avoid too much context switching. An allocate-and-release scheme was used on the
TriMedia, so that no extra state memory was needed in the filters, and no unnecessary
copies were made.
As can be seen, the overhead of running the RPC system is around 8% (with 16-line
buffers; the overhead approaches zero if full-frame buffers are used, but that is
unrealistic). This seems quite a reasonable tradeoff if we consider that it can now run
transparently on the parallel platform, achieving a 42% processing time decrease.
Actually, because the filtering and propagation are done concurrently in the parallel
case, the processing time is bounded by the slowest operation, which is the
propagation.

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

8 Conclusions and Future Work

We have presented a system in which an application developer can construct a parallel
image processing application with minimal effort. Data parallelism is captured by
specifying the way to process a single pixel or object, with the system handling
distribution, border exchange, etc. Task parallelism of these data parallel operations is
achieved through an RPC system, preserving the semantics of normal function calls as
much as possible. Results from an actual architecture have shown that the system
works, and can achieve a significant speedup by using an SIMD processor for low-level
vision processing.
The automatic skeleton instantiation is currently limited to ILP processors, and we wish
to include Xetal and FPGA skeletons as well. Furthermore, we want to investigate
dynamic image sizes and data types. Finally, an automatic mapping step should
combine CPU-, memory-, and bandwidth usages to best determine buffer sizes and
assign operations to processors.

References

[1] W. Caarls, SmartCam: Devices for Embedded Intelligent Cameras, website,
http://www.ph.tn.tudelft.nl/~wcaarls/smartcam, Delft, 2003
[2] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation, in
Research Monographs in Parallel and Distributed Computing, The MIT Press, 1989
[3] S. Kyo, T. Koga, S. Okazaki, and I. Kuroda, A 51.2 gops scalable video recognition
processor for intelligent cruise control base on a linear array of 128 four-way vliw
processing elements, in IEEE Journal of Solid State Circuits, November 2003
[4] Philips Applied Technologies, Parallel Input Vision Processor Fuga, website,
http://www.apptech.philips.com/industrialvision/pdf_files/fuga.pdf
[5] Matrox Imaging, GenesisPlus Vision processor board based on Motorola's
PowerPC™ with AltiVec™ technology, website, http://www.matrox.com/imaging/
support/old_products/genesisplus/b_genesisplus.pdf
[6] S. Kyo, S. Okazaki, and I. Kuroda. An extended c language and compiler for efficient
implementation of image filters on media extended micro-processors, in Proceedings of
ACIVS 2003 (Advanced Concepts for Intelligent Vision Systems), Gent University, 2003
[7] Vision Components, VC series smart cameras, website, http://www.vision-
components.de/products.html
[8] Fastcom Technology, iMVS series intelligent machine vision systems, website,
http://www.fastcom-technology.com/pages/products/process/userguides/
iMV%S_Overview_eng.pdf.
[9] DVT Sensors, Legend series SmartImage sensors, website,
http://www.dvtsensors.com/products/LegendManager.php
[10] Philips Applied Technologies, Inca 311: smart FirewireTM camera with rolling shutter
sensor, website, http://www.apptech.philips.com/industrialvision/pdf_files/inca311.pdf
[11] Matrix Vision, mvBlueLYNX, website, http://www.matrix-vision.com/pdf/
mvbluelynx_e.pdf.

Proc. EOS Conference on Industrial Imaging and Machine Vision (Munich, Germany, June 13-15), European
Optical Society, 2005, 39-49.

[12] A.A. Abbo, R.P. Kleihorst, L.Sevat, P. Wielage, R. van Veen, M.J.R. op de Beeck,
and A. van der Avoird, A low-power parallel processor IC for digital video cameras, in
Proceedings of the 27thEuropean Solid-State Circuits Conference, Villach, 2001
[13] IVP, MAPP2500 smart vision sensor, website, http://www.ivp.se/documentation/
technology/TheSmartVisionSensor010518.p%df.
[14] Philips Applied Technologies, Clicks Vision Application Builder, website,
http://www.apptech.philips.com/industrialvision/pdf_files/clicks.pdf
[15] R.P. Kleihorst, H. Fatemi, and H. Corporaal, Real-time face recognition on a smart
camera, in Proceedings of ACIVS 2003 (Advanced Concepts for Intelligent Vision
Systems), Ghent University, 2003
[16] W. Caarls, P.P. Jonker, and H. Corporaal, SmartCam: Devices for embedded
intelligent cameras, in Proceedings of the 3rd PROGRESS workshop on Embedded
Systems, Mariel Schweizer, 2002
[17] Philips Semiconductors, Nexperia PNX1300 Series, website,
http://www.semiconductors.philips.com/acrobat_download/literature/9397/75009542.pdf
[18] Philips Applied Technologies, Philips RoboCup Team, website,
http://www.apptech.philips.com/robocup
[19] R. Halstead, Multilisp: A language for concurrent symbolic computation, in ACM
Transactions on Programming Languages and Systems, October 1985.
[20] C. Nicolescu and P. Jonker, EASY PIPE - an “EASY to use” Parallel Image
Processing Environment based on algorithmic skeletons, in Proceedings of the PDIVM
Workshop, 2001.

