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Summary 
 
Embedded real-time image processing is widely used in many applications, including 
industrial inspection, robot vision, photo-copying, traffic control, automotive control, 
surveillance, security systems and medical imaging. In these applications, the size of 
the image can be very large, the processing time should often be small and real-time 
constraints should be met. Starting in the 1980's, many parallel hardware architectures 
for low-level image processing have been developed. They range from frame-grabbers 
with attached Digital Signal Processors (DSPs), to systolic pipelines, square and linear 
single-instruction multiple-data stream (SIMD) systems, SIMD pyramids, PC-clusters, 
and since a number of years, smart cameras. As processors are becoming faster, 
smaller, cheaper, and more efficient, new opportunities arise to integrate them into a 
wide range of CMOS processor devices. Since there are so many different applications, 
there is no single processor that meets all the requirements all applications. The 
processing done on a smart camera has very specific characteristics. On one hand, 
low-level image processing operations such as interpolation, segmentation and edge 
enhancement are local, regular, and require vast amounts of bandwidth. On the other 
hand, high-level operations like classification, path planning, and control may be 
irregular, consuming less bandwidth. In this paper we will focus on the range of smart 
cameras of the Philips laboratories and its software support for easy programming that 
were partly developed in close co-operation with the SmartCam [1] project. 
 
1  Introduction 
 
The SmartCam project investigates how a set of application-specific processors can be 
generated for intelligent cameras using design space exploration (the hardware 
framework), and how we are able to schedule the inherent data and task parallelism in 
an application in such a way, that a balance is found for both data and task parallel 
parts of the application software (the software framework). The found schedule is 
optimal for a certain architecture description. For the selection of the best architecture in 
combination with the best schedule, one can cycle through design space exploration 
and scheduling. 
Developing embedded parallel image processing applications is usually a very 
hardware-dependent process, requiring deep knowledge of the processors used. It is 
possible to explore parallelism along three axes: data-level parallelism (DLP), 
instruction-level parallelism (ILP) and task-level parallelism (TLP). Consequently one 
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can encounter one or more of these processors in a smart camera. For the software this 
means that if the chosen hardware does not meet the requirements, the application 
must be rewritten for a new platform. These problems can be avoided by encapsulating 
the parallelism. In the SmartCam project, algorithmic skeletons [2] are used to express 
the data parallelism inherent to low-level image processing. But, since different 
operations (low, intermediate and high level image processing) run best on different 
kinds of processors, we need to exploit task parallelism as well. For this an 
asynchronous remote procedure call (RPC) system is used, which was optimized for 
low-memory and sparsely connected systems such as the Philips laboratories line of 
smart cameras. The software framework eventually uses a normal C-interface to the 
user in which the skeleton calls are implicitly parallelized and pipelined. 
 
The structure of this paper is as follows: section 2 reviews some related work. Section 3 
discusses and profiles smart camera applications. Section 4 describes our smart 
camera architecture and characteristics. Section 5 describes our programming 
environment and section 6 discusses some optimizations. Section 7 presents some 
results from our system and finally section 8 draws conclusions and points to future 
work. 
 
2  Related Work 
 
Because of the increased power and area efficiency, SIMD arrays, and in particular 
linear processor arrays (LPAs), are still frequently used in embedded applications. 
Vision accelerator boards are employed in real-time control systems where there is 
enough room to have a workstation. They contain LPAs (IMAP-CE [3]), DSPs (FUGA 
[4]), or GP processors (GenesisPlus [5]). The IMAP-CE uses a data-parallel C 
extension called 1DC [6] to program the LPA, while the FUGA and GenesisPlus are 
programmable in standard C++. All boards provide optimized library routines for 
common image processing operations. In addition, the GenesisPlus uses the library 
routines to interface with a separate neighborhood processor as well. The use of an 
explicitly data parallel language makes the IMAP-CE slightly more difficult to program, 
but also potentially faster. It occupies a place between assembly language, which is 
always fastest but not realistically used by image processing researchers, and a library-
only based approach, which may shield the programmer too much to make any 
optimizations. It seems that a library-based system in which the user can descend to a 
(parallel) programming level, if necessary, is the best approach. 
 
For the more embedded market, with a need to be very small and power efficient, 
cameras that integrate sensing and processing are emerging (figure 1). Again, DSP 
(Vision Components [7], iMVS [8]) and GP (Legend [9], Inca 311 [10], mvBlueLYNX 
[11]) solutions are often used, but single chip LPAs (Xetal [12], added to Inca 311) and 
even integrated sensor/LPA chips (MAPP2500 [13]) exist as well. Again, all systems are 
programmable using an image acquisition and processing library, but the single chip 
LPAs, because of the simplicity of their processing elements, cannot easily be 
programmed in C. Xetal tries to remedy this by providing a C++-like language called 
XTC, while the MAPP2500 avoids the problem altogether by only providing a few  
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algorithms specific to the expected application 
domain (range imaging). Two of the smart 
cameras, Inca311 and Legend, are also 
programmable using graphical programming 
languages [14]. Both are targeted at industrial 
inspection, and allow novices in the field of 
image processing to graphically connect 
algorithms like sub-pixel edge detection, angle 
measurements and template matching. Efforts 
have been made to put such a user interface 
above a library-based approach, providing 
another level of abstraction in a single 
framework. 
 
3  Application Profiling 
 
The optimal smart camera architecture mainly depends on its application. Each 
application dictates the type, order and intensity of image processing operations. 
Consequently, the architecture needs to be scaled up or down. To a varying degree, all 
application segments look for better performance at lower cost and lower power 
consumption. 
 
3.1  Mobile-multimedia Processing 
 
This class of applications is characterized by low-cost, moderate computational 
complexity and low power. The application can usually live with reduced quality of 
services, e.g., lower-frame rate and compressed video streams. The objective from the 
point of view of product manufacturers is cost reduction, which translates to reduction in 
silicon area and power-efficient computation. The latter objective can often be 
compromised for the former since mobile devices are active for a short period of time 
compared to standby duration and the battery energy is wasted mainly in the standby 
phase. 
The computational complexity for this class of applications varies from 300 MOPs for 
basic camera pre-processing for image resolutions of 640*480 at 30 frames per second 
(fps) to 1.5 GOPs for more complex pre-processing including auto white-balance, 
exposure time control (about 150 operations per pixel). In future, the computational 
complexity will increase, because the tendency in mobile video is to increase 
resolutions and frame rates, combined with more complex applications.  
 
3.2  Intelligent Interfaces and Home Robotics 
 
This class of applications corresponds to emerging house robots with vision features. 
Typical examples include intelligent devices with gesture and face recognition [15], 
autonomous visual guidance for robots, and smart home surveillance cameras. These 
devices cover the medium-cost range. From a user point of view, the response times 
and accuracies of the intelligent devices are of high importance and imply faster burst 

 
Figure 1: Philips smart camera product line 
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performance. They need to operate in uncontrolled environments (i.e. varying light 
conditions), and smarter (complex) algorithms are needed to achieve the desired 
performance. The power aspect remains an issue especially in standalone modules 
such as battery powered surveillance robots.   
Because of the extra intelligence needed in this class of applications, the number of 
operations per pixel is in the order of 300 or more. This translates to more than 3 GOPs 
for a 30 fps VGA size video stream. Even though the devices can exhibit long idle times 
until they are excited by an event, e.g., an intruder in a scene, in their active duration 
the same degree of performance is required to guarantee real-time behavior. 
 
3.3  Industrial Vision 
 
Unlike the previous two cases, applications in this segment are cost-tolerant and more 
emphasis is given in achieving top-performance sometimes at a given power budget. 
The emergence of smart cameras has made it possible for various industrial 
applications to replace large expensive PC based vision systems with compact and light 
modules having different vision functionalities.  
In this class of applications a number of basic pixel-level operations such as edge 
detection, enhancement, morphology, etc. need to be performed. Because of the high 
video rates often in excess of 100 fps, the computational complexity is easily more than 
4 GOPs. 
 
4  Smart Camera Architecture 
 
In the SmartCam [16] environment, an application designer will be able to generate an 
optimal smart camera hardware configuration for his specific domain, based on his 
application code and various constraints such as size, cost and power consumption. 
However, for this approach to be feasible it is necessary to restrict the search space by 
imposing an architecture template. Based on the previous expertise and projects our 
architecture template will consist of a sensor, reconfigurable logic (i.e. FPGA) to 
interconnect the sensor and processors and to perform some fixed applications such as 
lens correction, one or more LPA(s), instruction level parallel processor(s), memories, 
and communications peripherals. The general template can be parameterized with 
regard to resolution, number of processing elements (PEs) and PE functionality, data 
width, the amount and type of functional units, etc. 
 
The choice of an LPA is simple, because it is perfectly suited for the data parallelism 
inherent to low-level image processing operations. ILP processors, such as very long 
instruction word (VLIW) and superscalar processors can execute multiple independent 
instructions per cycle, exploiting a finer-grained level of parallelism than LPAs. This is 
necessary because higher-level vision processing tasks are too irregular to execute on 
LPAs. Figure 2 depicts the architecture of a Philips smart camera based on the 
architecture template discussed before. The architecture uses a Xetal as LPA 
processor. The Xetal, a SIMD processor, includes 320 processing elements, each with 
one ALU. It is suitable for many low-level operations to exploit DLP. Trimedia [17] is a 
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VLIW example; it can execute five operations per cycle. It is suitable for high-level 
operations to exploit ILP.  
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Figure 2: Philips smart camera architecture 

Since the architecture comprises reconfigurable logic, it is possible to change the 
architecture depending on the application. The Philips RoboCup team (autonomous 
soccer robots) [18] uses a color vision system for localization of the ball, goals and 
players in the field (see figure 3a). 
 

   
Figure 3: a) Color segmented image of Philips RoboCup vision system, b) Contour segmented image of 
industrial application 

The application can be split up in different parts like color segmentation and object 
detection. The partitioning of the application onto the architecture is shown in figure 4a. 
In industrial applications, contour information is often used to inspect or localize objects 
(see figure 3b). The partitioning of the application is illustrated in figure 4b. Notice that in 
both cases the FPGA is also used to order (run length encoding and edge linking) the 
data from Xetal in such a way that the TriMedia can process it further with minimal 
effort. 
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Figure 4: Partitioning examples of the vision application on processing elements of the architecture: a) 
Blob-based RoboCup color application, b) Contour-based industrial application 

5  Programming 
 
Our programming environment [16] is based on C, to provide an easy migration path. In 
principle, it is possible (although slow) to write a plain C program and run it on our 
system. In order to exploit concurrency, though, it is necessary to divide the program 
into a number of image processing operations, and to apply these using function calls. 
Parts of the program, which cannot easily be converted, can be left alone unless the 
speedup is absolutely necessary. The main program, which calls the operations and 
includes the unconverted code, is run on a control processor, while the image 
processing operations themselves are run on the coprocessors that are available in the 
system (the control processor itself may also act as a coprocessor). Only this main 
program can make use of global variables; because of the distributed nature of the 
coprocessor memory, all data to and from the image processing operations must be 
passed using parameters. 
 
5.1  Within-operation parallelism 
 
The main source of parallelism in image processing is the locality of pixel-based 
operations. These low-level operations reference only a small neighborhood, and as 
such can be computed mostly in parallel. Another example is object-based parallelism, 
where a certain number of possible objects or regions-of-interest must be processed. 
Both cases refer to data parallelism, where the same operation is executed on different 
data (all pixels in one case, object pixels or objects in the other). 
Data parallel image processing operations map particularly well on linear SIMD arrays. 
However, since we don not want the application developer to write a parallel program, 
we need another way to allow him to specify the amount of parallelism present in his 
operations. For this purpose, we use algorithmic skeletons. These are templates of a 
certain computational flow that do not specify the actual operation, and can be thought 
of as higher-order functions, repeatedly calling an instantiation function for every 
computation. Take a very simple binarization: 
 
for (y=0; y<HEIGHT; y++) 

for (x=0; x<WIDTH; x++) 
   out[y][x] = (in[y][x]>128); 

 
Using a higher-order function, PixelToPixelOp, we can separate the structure from the 
computation. PixelToPixelOp will implement the loops, calling binarize every iteration: 
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int binarize(int value)  
return (value>128); 

 
void PixelToPixelOp(int (*op)(int), 

int in[HEIGHT][WIDTH], int out[HEIGHT][WIDTH]) 
for (y=0; y<HEIGHT; y++) 

for (x=0; x<WIDTH; x++) 
out[y][x] = op(in[y][x]); 

 
PixelToPixelOp(binarize, in, out); 
 
Note that implementing PixelToPixelOp column-wise instead of row-wise - by 
interchanging the loops - does not change the result, because there is no way for op to 
reference earlier results (side effects are not allowed). It can be said that by specifying 
the inputs and outputs of the instantiation function, the skeleton characterizes the 
available parallelism. So, by choosing a skeleton, the programmer makes a statement 
about the parallelism in his operation, while not specifying how this should be exploited. 
This freedom will allow us to optimally map the operation to different architectures. 
Another benefit is that the image processing library normally shipped with DSPs and 
other image processors is replaced by a skeleton library, which is more general and 
thus less in need of constant updates. 
 
5.2  Between-operation parallelism 
 
An image processing application consists of a number of operations described above, 
surrounded by control flow constructs. In order to provide an easy migration path, these 
operations will be called as higher-order functions, although they are implemented using 
source-to-source transformations. Furthermore, because our hardware platform is 
heterogeneous, it is important that multiple of these operations are run concurrently, as 
not all processors can be working on the same computation. We are therefore using 
asynchronous RPC calls as a method to exploit this task-level parallelism. 
In RPC, the client program calls stubs that signal a server to perform the actual 
computation. In our case, the application is the client program running on the control 
processor, while the skeleton instantiations are run on the coprocessors. This alone 
does not imply parallelism, because the stub waits for the results of the server before 
returning. In asynchronous RPC, therefore, the stub returns immediately, and the client 
has to block on a certain operation before accessing the result. This allows the client 
program to run concurrent to the server program, as well as multiple server programs to 
run in parallel. 
However, this still has the disadvantage of requiring the client program to wait on the 
completion of an operation before passing its result to another one, even though it never 
uses the results itself. To address this problem, we are using MultiLisp's [19] concept of 
futures, placeholder objects that are only blocked upon when the value is needed for a 
computation. Since simple assignment is not a computation, passing the value to a stub 
doesn't require blocking; once the called function needs the information, it will block 
itself until the data is available, without blocking the client program: 
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while(1) 
Read(in); 
PixelToPixelOp(op1, in, inter1); 
PixelToPixelOp(op2, in, inter2); 
PixelReductionOp(op3, inter1, inter2, out); 
/* ... Concurrent client code ... */ 
block(out); 

  /* ... Dependent client code ... */ 
 
6  Optimizations 
 
While our futures-like implementation is much less elaborate than MultiLisp's (requiring, 
for example, explicit blocks on results, although these could be inserted by the 
compiler), it does tackle two other problems: data distribution and memory usage. Both 
originate from our architecture template, which features distributed-memory processors 
with a relatively low amount of on-chip memory. 
 
6.1  Data distribution 
 
The data generated by most image processing operations is not accessed by the client 
program, but only by other operations. This data should therefore not be transported to 
the control processor. In order to achieve this, we make a distinction between images 
(which are streams of values) and other variables. 
Images are never sent to the control processor unless the user explicitly asks for them, 
and as such no memory is allocated and no bandwidth is wasted. Rather, they are 
transported between coprocessors directly, thus avoiding the scatter-gather bottleneck 
present in some earlier work [20]. All other variables (thresholds, reduction results, etc.) 
are gathered to the control processor and distributed as necessary. The programmer 
can use them without an explicit request. 
The knowledge about which data to send where, simply comes from the inputs and 
outputs to the skeleton operations, which are derived from the skeleton specification 
and are available at run time. Coprocessors are instructed to send the output of an 
operation to all peers that use it as an input. 
 
6.2  Memory usage 
 
Our concern about memory usage stems from the fact that especially SIMD LPAs for 
low-level image processing may not have enough memory to hold an entire frame, let 
alone multiple frames if independent tasks are mapped to it. These processors are 
usually programmed in a pipelined way, where each line of an image is successively led 
through a number of operations. We would like our system to conserve memory in the 
same way, and have therefore specified all our skeletons to read from and write to FIFO 
buffers. The distribution mechanism allocates these buffers, and sets up transports as 
described above. The operations themselves read the needed information from the 
buffer, process it, and write the results to another buffer. A method is provided to signal 
that no more data will be forthcoming. This conserves memory, because even a series 
of buffers is generally much smaller than a frame. Simultaneously, it hides the origin of 
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the data, making the operations independent of the producers of their input and the 
consumers of their output. 
The price of all this is that operations must consume data in a certain order, and if the 
source operation doesn't generate it in the correct sequence, a reordering operation 
must be inserted, typically requiring a frame memory. Fortunately, many low-level 
operations can tolerate different orderings, while more irregular operations are generally 
run on processors with enough memory. 
 
7  Results 
 
We have implemented a double thresholding edge detection algorithm on our 
architecture. In this algorithm, the Bayer pattern sensor output is first interpolated, then 
the Sobel X and Sobel Y edge detection filters are run and combined, the output is 
binarized at two levels, and finally the high threshold is propagated using the low 
threshold as a mask image. This final propagation cannot be run on the Xetal, because 
it requires a frame memory. 
 
Table 1. Timing results of the double thresholding edge detection algorithm 
  

Trial Processing time 
Single operation (TriMedia)  115 ms 
Split operations (TriMedia)  124 ms 
Parallel (Xetal + TriMedia)  67 ms 

 
Three situations were compared: one in which the entire algorithm was implemented in 
a single operation on the TriMedia, as a baseline for how a sequential application would 
be written. Next, the operation was split into tasks as described above, and all tasks 
were mapped to the TriMedia; this shows the overhead caused by the task switching 
and buffer interaction. Finally, all low-level operations were mapped to the Xetal, while 
the propagation and display were mapped to TriMedia; this resembles the final situation 
as it would run on our system (see table 1). Because Xetal has only 16 line memories, 
the buffers between the filters were one line. On the TriMedia, they were 16 lines, to 
avoid too much context switching. An allocate-and-release scheme was used on the 
TriMedia, so that no extra state memory was needed in the filters, and no unnecessary 
copies were made.  
As can be seen, the overhead of running the RPC system is around 8% (with 16-line 
buffers; the overhead approaches zero if full-frame buffers are used, but that is 
unrealistic). This seems quite a reasonable tradeoff if we consider that it can now run 
transparently on the parallel platform, achieving a 42% processing time decrease. 
Actually, because the filtering and propagation are done concurrently in the parallel 
case, the processing time is bounded by the slowest operation, which is the 
propagation. 
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8  Conclusions and Future Work 
 
We have presented a system in which an application developer can construct a parallel 
image processing application with minimal effort. Data parallelism is captured by 
specifying the way to process a single pixel or object, with the system handling 
distribution, border exchange, etc. Task parallelism of these data parallel operations is 
achieved through an RPC system, preserving the semantics of normal function calls as 
much as possible. Results from an actual architecture have shown that the system 
works, and can achieve a significant speedup by using an SIMD processor for low-level 
vision processing. 
The automatic skeleton instantiation is currently limited to ILP processors, and we wish 
to include Xetal and FPGA skeletons as well. Furthermore, we want to investigate 
dynamic image sizes and data types. Finally, an automatic mapping step should 
combine CPU-, memory-, and bandwidth usages to best determine buffer sizes and 
assign operations to processors. 
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