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Abstract

Reinforcement learning is a promising paradigm for learning robot control, allowing complex
control policies to be learned without requiring a dynamics model. However, even state of the
art algorithms can be difficult to tune for optimum performance. We propose employing an
ensemble of multiple reinforcement learning agents, each with a different set of hyperparameters,
along with a mechanism for choosing the best performing set(s) on-line. In the literature, the
ensemble technique is used to improve performance in general, but the current work specifically
addresses decreasing the hyperparameter tuning effort. Furthermore, our approach targets on-line
learning on a single robotic system, and does not require running multiple simulators in parallel.
Although the idea is generic, the Deep Deterministic Policy Gradient was the model chosen, being
a representative deep learning actor-critic method with good performance in continuous action set-
tings but known high variance. We compare our online weighted q-ensemble approach to q-average
ensemble strategies addressed in literature using alternate policy training, as well as online training,
demonstrating the advantage of the new approach in eliminating hyperparameter tuning. The appli-
cability to real-world systems was validated in common robotic benchmark environments: the bipedal
robot half cheetah and the swimmer. Online Weighted Q-Ensemble presented overall lower variance
and superior results when compared with q-average ensembles using randomized parameterizations.

Keywords: Reinforcement Learning, Deep Reinforcement Learning, Ensemble Algorithms, Hyperparameter
Optimization.
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1 Introduction

Reinforcement learning (RL) is based on a math-
ematical framework known as a Markov Decision
Process (MDP) (Sutton and Barto, 2018). Con-
trol policies for many common domains such as

motor control (Liu et al, 2021), treatment plan-
ning (Watts et al, 2020), autonomous driving
(Tammewar et al, 2023), and disease spread pre-
diction (Khalilpourazari and Doulabi, 2021) can
be optimized under this framework, by maxi-
mizing a reward signal in order to achieve a
goal. RL can be distinguished from other optimal
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2 Online Weighted Q-Ensembles

control approaches such as dynamic program-
ming by the fact that an a priori model of
the environment is not required. Recent advances
in reinforcement learning using deep neural net-
works (Arulkumaran et al, 2017) allow it to be
applied to increasingly complex environments. In
robotics, this means optimizing more complex
motions, requiring the simultaneous actuation of
many joints. In these environments, the state
space (joint positions and velocities) is continuous.

Real-world domains have dangerous or slow
interactions, i.e., learning from scratch through
online interactions with the real-world is highly
time-consuming or highly expensive (Dulac-
Arnold et al, 2021; Han et al, 2023), risk-
ing damaging the robot (Meijdam et al, 2013;
Koryakovskiy et al, 2017). To this end, off-policy
algorithms are used, which constantly re-use data
collected in previous interactions with the envi-
ronment, reducing iterations during learning. For
discrete actions, the DQN (Deep Q-Learning)
algorithm (Mnih et al, 2015) has shown good
performance results for Atari games, while for
continuous actions such as robotics, the DDPG
(Deep Deterministic Policy Gradient) (Lillicrap
et al, 2016) method and its variants TD3 (Fuji-
moto et al, 2018) and SAC (Haarnoja et al,
2018) are more suitable. All these solutions utiliz-
ing deep learning algorithms need fine-tuning of
their hyperparameters to converge. One approach
is to perform grid search (Oliveira. and Caarls.,
2020) or genetic search (Cardeñoso Fernandez and
Caarls, 2018) to automate the tuning. These algo-
rithms have a high computational cost, and are
difficult to apply if the optimization is to take
place in the real world instead of in simulation.

Alternatively, an ensemble of different sets
of hyperparameters can be trained to decrease
the hyperparameter tuning effort (Oliveira. and
Caarls., 2021). Ensembles were first used in RL
before the advent of deep learning techniques to
increase performance (Wiering and Van Hasselt,
2008; Hans and Udluft, 2010; Duell and Udluft,
2013), and recent efforts have shown that ensem-
ble aggregations of deep neural networks perform
better than a single algorithm as well (Wu and
Li, 2020; Lee et al, 2021; Song et al, 2023). Some
proposed ensemble aggregations have additional
parameters, which add more variables to be fine-
tuned, while others present a population-based

approach to improve performance (Jung et al,
2020).

While ensembles in deep RL thus demon-
strated good results when used to increase perfor-
mance, there have been few studies of the behavior
of RL ensembles with different hyperparameters,
aimed at reducing the tuning effort. The history-
based framework in Oliveira. and Caarls. (2021)
is the first study to seek optimized techniques of
ensemble deep reinforcement learning to decrease
the hyperparameter tuning effort, where differ-
ently parameterized DDPG policies are trained
online in a MuJoCo environment (Todorov et al,
2012). However, it was based purely on action
aggregation, without taking into account the value
function those actions are based on.

We believe the current work is the first use of
value function ensembles specifically targeted at
eliminating hyperparameter tuning. This article
aims to improve the ensemble aggregation strat-
egy by using the weighted mean of value functions
trained using different, randomly chosen hyperpa-
rameters. This mean is used to choose an action
from among corresponding control policies trained
using those hyperparameters. In previous work,
such a maximum Q-average ensemble (Hans and
Udluft, 2010; Anschel et al, 2017) has been shown
to work, although with unweighted averaging. Our
main contribution resides in the use of a weighted
average in order to deal with the larger expected
variance between the outputs of vastly differently
parameterized value functions. Additionally, our
algorithm does not require parallel environments
(Seyed Motehayeri et al, 2021), and as such can
be applied on a single real-world system.

The Deep Deterministic Policy Gradient
(DDPG) algorithm was chosen to validate the
model, as it represents a family of state-of-the-art
algorithms known for their good learning perfor-
mance in continuous action settings (Shen et al,
2020). However, the approach is designed to be
applicable to any off-policy actor-critic method.

This paper does not cover research that
mixes RL with other ensemble optimization algo-
rithms (Ganaie et al, 2022). In such settings, a
single RL agent is used to choose an action among
an ensemble of base models, such as for forecasting
(Saadallah and Morik, 2021; Jalali et al, 2022; Lin
et al, 2023). In contrast, our base models are RL
agents themselves, a fact we use explicitly during
training and inference.

2            
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This article is organized in 6 sections. Section 2
presents the DDPG algorithm and Q-Average
ensemble method, while Section 3 presents the
novel Online Weighted Q-Ensemble. The experi-
ments are defined in Section 4 and their results
discussed in Section 5. Finally, Section 6 presents
the conclusion.

2 Background

Reinforcement learning is a type of machine learn-
ing technique that enables an agent to learn in an
interactive environment by trial and error using
feedback from its own actions and experience,
seeking to maximize rewards (Sutton and Barto,
2018). Every time step t, an action a ∈ A at state
s ∈ S is taken in the environment, which returns a
reward r ∈ R and results in the next state s′ ∈ S.
The goal is to find the control policy π(a | s)
that gives the probability of taking action a in
state s that maximizes the expected sum of future
rewards, also called the return R:

Rt =

∞∑
i=0

γirt+i+1, (1)

where γ is a discount factor introduced to avoid
infinite returns.

In order to scale RL techniques, Deep RL
learns its own state representation and can there-
fore solve complex problems, allowing its appli-
cation in many domains of decision making tasks
such as healthcare, robotics, smart grids and
finance (François-Lavet et al, 2018).

2.1 Deep Deterministic Policy
Gradient (DDPG)

DDPG (Lillicrap et al, 2016) is based on the
Deterministic Policy Gradient (DPG), which was
one of the first model-free and off-policy actor-
critic algorithms for continuous state and action
spaces (Silver et al, 2014). DDPG, illustrated in
Figure 1, is an extension of DPG that uses deep
neural networks to approximate the actor and
critic. The actor approximates a deterministic pol-
icy µ(s; θ) with weights θ, such that π(a | s) =
1 iff a = µ(s; θ). The critic estimates the expected
return of µ by approximating the action-value

Environment

s a

Q(s, a)

Replay Bu�er

r

s'
s

a

DDPG

μ
Q

Fig. 1 Deep Deterministic Policy Gradient (DDPG) algo-
rithm (Lillicrap et al, 2016), its interaction with the
environment and the storage of transactions in the Replay
Buffer.

function

Qπ(s, a) = Eπ [Rt | st = s, at = a] , (2)

using a neural network, as in deep Q-learning
(Mnih et al, 2014).

The critic network, with weights ζ, is updated
to minimize the loss function

L(ζ) = E(s,a,r,s′)

[
(Q(s, a; ζ)− y)

2
]
,

y = r + γQ(s′, µ(s′; θ′); ζ ′),
(3)

where θ′ and ζ ′ are Polyak-averaged versions of
the main network parameters, also called tar-
get networks, used to stabilize the learning. They
are updated at given intervals using an averaging
parameter τ :

ζ ′ = (1− τ) · ζ ′ + τ · ζ, (4)

θ′ = (1− τ) · θ′ + τ · θ. (5)

The actor update takes a step in the positive
gradient criteria of the critic with respect to the
actor parameters, given by the chain rule

∇θJ = Est∼ρ [∇θQ(s, µ(s; θ); ζ)|s=st ] ,

= Est∼ρ

[
∇aQ(s, a; ζ)|s=st,a=µ(st)∇θµ(s; θ)|s=st)

]
,

(6)
thus moving the control policy in the direction
of increased returns. In Eq. (6), J represents the
expected return over the start distribution and ρ
is an exploratory stochastic behavior policy.

An experience replay buffer R stores observed
transitions (s, a, r, s′), in order to learn from
past experience. Updates are performed using a

3            
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4 Online Weighted Q-Ensembles

random minibatch D sampled from R, used to
temporally decorrelate the observations.

The behavior policy ρ in Eq. (6) is derived
from the actor by adding noise, ρ ∼ µ(s; θ) +
N , to improve the exploration. The N uses the
Ornstein-Uhlenbeck process (Uhlenbeck and Orn-
stein, 1930) for physical environments that have
momentum to generate time-correlated explo-
ration for increased efficiency (Nθ = 0.15 and Nσ

= 1). The Ornstein-Uhlenbeck process models the
velocity of a Brownian particle with friction, which
results in temporally correlated values centered
around zero (Lillicrap et al, 2016).

2.2 Q-Average Aggregation

In Ensemble RL, multiple value functions and/or
policies are learned at the same time, and their
actions are aggregated to determine the ensem-
ble action. One of the best ensemble aggregation
methods developed in previous work is value func-
tion averaging. This has been successful in both
regular reinforcement learning in discrete envi-
ronments (Sun and Peterson, 1999; Ernst et al,
2005) as well as deep RL in continuous action
spaces (Huang et al, 2017).

The Actor-Critic Ensemble (ACE; Huang et al
(2017)) introduced the use of the Deep Deter-
ministic Policy Gradient (DDPG) algorithm for
ensembles. At inference time, the best action is
selected from all actors running in parallel, each
using the outputs of all critic networks which
are combined by taking the average. This work
showed significant improvement in the perfor-
mance of DDPG in a bipedal walking environ-
ment; it increased the learning speed and lowered
the number of falls.

3 Online Weighted
Q-Ensemble

Our Q-ensemble model builds upon the Actor-
Critic Ensemble method, by weighing the critics’
predictions. Such a weighing, similar to conven-
tional classifier Boosting (Freund and Schapire,
1996), aims to emphasize the input of the critics
that better estimate the return when selecting the
ensemble action. Considering that in our case the
DDPG ensemble hyperparameters are chosen ran-
domly with only little user input, it is important

that critics with bad performance do not desta-
bilize the final policy. Our critic weight update is
therefore designed to decrease the weight of such
critics.

3.1 Inference

Figure 2 presents the process by which Q values
are calculated according to the Online Weighted
Q-Ensemble model. The ensemble is composed of
n DDPG agents, each composed of a critic Qi =
Q(·, ·; ζi) and an actor µj = µ(·; θj), i, j ∈ 1 . . . n.
At a given time step t and state s, each actor µj

calculates an action aj = µ(st; θj). Subsequently,
each of the actions is evaluated by all critics, gen-
erating the corresponding Q-values Q(st, aj ; ζi).
The generation of these values results in a matrix
Q with elements qij .

The DDPG networks are updated indepen-
dently, since they use different hyperparameters.
This creates a challenge when analyzing the Q
matrix to select the ensemble action because their
Q-value magnitudes may not be directly compa-
rable. We propose the use of a softmax function σ
to normalize the values of a critic for the different
actions:

σ(qij) =
eqij∑n
k=1 e

qik
. (7)

The σ(qij) normalizes the q-values qij over all
q-values related to value function Qi, resulting in
q̄ij . This procedure is equivalent to interpreting
each critic as defining a softmax policy over the
suggested actions. Averaging these action proba-
bilities does not suffer from the incomparability of
Q-values.

In the final step, the Q values are combined
across critics using weighted averaging. The raw
critic weights Wraw are normalized with the same
softmax function σ to ensure they form a proper
distribution, resulting in W . Then, we use the
weighted average to calculate the critic ensemble
prediction for all actions

qw = WTQ, (8)

where W = 1
n1 results in standard Q value

averaging. Due to the normalization of the Q
matrix, this procedure is equivalent to weighted
Boltzmann addition (Wiering and Van Hasselt,
2008). The final ensemble action, at, is the one
with the highest probability:

4            
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Fig. 2 Online Weighted Q-Ensemble. Each critic Qi evaluates the actions suggested by all actors µj , and the resulting
values are normalized using the softmax function σ. The final Q-value qwj of each action aj is the sum of the critics’ values
{q̄1j , q̄2j , · · · , q̄nj}, weighted by their respective weights wi.

at = µz(st), (9)

where z = argmax qw.

3.2 Online Training of Weights

All DDPG agents are trained in a single environ-
ment, using a shared replay buffer. The behav-
ior policy υβ is either derived from the ensem-
ble action (online training) or from each actor
in sequence on a per-episode basis (alternate
training). The former can be expected to learn
faster, while the latter ensures at least some near
on-policy transitions for all actors, which may
increase robustness.

The raw weights, Wraw, are initialized uni-
formly, and passed through a softmax layer before
being used for the weighting. Therefore, at the
beginning of the training, the critic weights W
remain close to the uniform distribution. Dur-
ing training, we minimize the temporal difference
(TD) error of the critic ensemble by minimizing
the loss

L(Wraw) =
∑

(s,a,r,s′)∈D

n∑
i=1

wiδ
2
i ,

δi = r + γQ(s′, µ(s′; θ′i); ζ
′
i)−Q(s, a; ζi),

(10)
over the weight parameters. Minimizing Eq.

(10) reduces the weights of the critics with higher
squared TD error δ, which can be assumed to
have a worse value function prediction, see Eq. (3).
Since

∑
i wi = 1, due to the softmax function

applied to Wraw, this necessarily increases the
better critics’ weights.

Note that although the Q values are normal-
ized for action selection during inference, the TD
errors calculated in Eq.(10) during training are
not. As such, we do not optimize hyperparame-
ters that inherently greatly influence the Q values,
specifically the discount rate γ and reward scale.

The code used in the Online Weighted Q-
Ensemble can be found online1.

3.3 Performance Measure

We introduce a performance metric to compare
the different forms of aggregation between differ-
ent environments. It has the property of being
invariant to both constant addition and multipli-
cation of the reward function, which allows some
measure of robustness in comparing environments
that have performance values at different scales.

As such, to measure the overall performance of
the aggregations used, the average relative regret
is calculated as

R(k) =
∑
e

∑
g

∣∣∣∣ maxl pegl − pegk
maxl pegl −minl pegl

∣∣∣∣ , (11)

where pegk is the performance of aggregation
strategy k in environment e for ensemble group g
(an ensemble group is a specific way of construct-
ing the ensemble). This metric measures how
much worse a certain aggregation strategy is, rel-
ative to the best aggregation for that experiment.
Higher regrets mean worse overall performance.

1https://github.com/renata-garcia/wce ddpg
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4 Experiments

To validate the model, we test its performance
by ablating the two differences with respect to
Q-value averaging: using a weighted average, and
using Bolzmann addition. This results in the
following combinations:

• Softmax TDError : uses the model presented in
Section 3;

• TDError : skips the softmax normalization of
the Q-values presented in Eq. (7);

• Softmax Average: maintains W = 1
n1, but

otherwise implements the model of Section 3;
• Average: standard Q-value averaging (Huang
et al, 2017).

The average policy ensemble, with DDPG
agents independently trained and no q-ensemble,
recently presented good performance with 3 fine-
tuned hyperparameter sets (Wu and Li, 2020)
in a single environment 2D robot arm simulator.
Based on this result, one ensemble group with 3
fine-tuned DDPG (3 Good) instances is used to
validate the model.

However, the Online Weighted Q-Ensemble
seeks to minimize the effort of fine-tuning in
an ensemble, and to that end 3 more ensemble
groups were created, mixing good (fine-tuned) and
bad (not fine-tuned and non-converging) DDPG
hyperparameters: 1 Good and 1 Bad ; 1 Good and
3 Bad ; and 1 Good and 7 Bad.

In addition, two types of training mode are
used in order to expand the validation of model.
In the alternate training mode, at the begin-
ning of each training episode, the policy is chosen
alternately between each of the algorithms of the
ensemble, as in Wu and Li (2020). In the online
training mode and in the testing phase of the
ensemble, the ensemble action is chosen at each
step of the episode.

As environments, we chose two simple con-
trol problems, and two harder robotics tasks to
evaluate scalability. In all cases, the episodes
start at the resting point of the environment, the
observations of the environments are in trigono-
metric format and there are 1000 observation steps
before starting training. We use the standard feed-
forward DDPG networks with two dense layers;
the ranges of the hyperparameters are given in
Table 1.

The specific environments used are the
Inverted Pendulum Swing-up (2 state variables)
and Cart-Pole environments (4 state variables)
from the Generic Reinforcement Learning Library
(GRL) 2, and half cheetah v2 (17 state variables)
and swimmer v2 (8 state variables) from the Ope-
nAI Gym framework (Brockman et al, 2016) with
the MuJoCo environments (Todorov et al, 2012).

Swimmer v2 was used as a final validation
for hyperparameter randomization. For this envi-
ronment, 30 random configurations of ensembles
formed with 8 parameterizations were trained
once. The network architecture and the hyper-
parameters were randomly generated around the
limits given before (Table 1).

In order to measure the overall performance
of the aggregations used, the average relative
regret in Eq. (11) is calculated over the first three
environments and all four ensemble groups.

5 Results

In the this section, the average performances pre-
sented are calculated based on the cumulative
rewards of the last 20 episodes in each run, and
the 95% confidence interval is calculated over 30
runs of each configuration for the simple control
problems and 10 runs for the half cheetah v2.

5.1 Performance

Figure 3 shows the final performance and its con-
fidence interval. Each bar graph compares the
performance on the 4 ensemble groups for the
different aggregations, with separate graphs show-
ing distinct environments and training modes.
Also shown is the performance of the best single
parameterization for each environment.

We can observe that the online training mode
almost always outperforms alternate training; fur-
thermore, there is no significant variation between
the aggregations in the 3 Best ensemble per-
formance. Ensembles with a majority of bad
parameterizations perform worse, which is espe-
cially evident in the more complex half cheetah v2
environment.

In general, the Softmax TDError aggregation
performs better than, or within the confidence

2GRL Library (Generic Reinforcement Learning Library)
(https://github.com/wcaarls/grl).
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Table 1 Hyperparameters used to build each parameterization of the ensemble.

Hyperparameters Value Description

discount factor 0.99 Discount factor used in the Q-learning
update.

reward scale 0.01 Scaling factor applied to the environ-
ment’s rewards.

soft target 0.01 Update rate of the target network
update rate weights.
update interval 10 or 100 Number of steps, or frequency

with which the soft target update
is applied.

learning rate 0.001 or 0.0001 Update rate used by AdamOptimizer.
(actor or critic network)

replay steps1 64, 128 or 256 Total number of training samples
per timestep.

minibatch size1 16, 64 or 128 Number of training samples per minibatch.

layer 1 size2 100, 200, 300 Number of neurons in regular densely-
(actor and critic network) or 400 connected NN layers

layer 2 size2 50, 100, 200 Number of neurons in regular densely-
(actor and critic network) or 300 connected NN layers
activation function relu or softmax Activation function of the Q Layer.

(Critic Network)
replay memory 1000000 Size of the replay memory array that
size stores the agent’s experiences in the

environment.
observation steps 1000 Observation period to start replay

memory using random policy.
1 Fixed per environment.
2 Layer 2 size network was always smaller than layer 1 size network. Therefore, layer 1 size was never set with minimum value (50)
and layer 2 size was never set with maximum value (400).

3 Good

1 Good 1 Bad

1 Good 3 Bad

1 Good 7 Bad

-1400

-1200

-1000

-800

Inverted Pendulum Alternately Training

3 Good

1 Good 1 Bad

1 Good 3 Bad

1 Good 7 Bad

-1400

-1200

-1000

-800

Inverted Pendulum Online Training

3 Good

1 Good 1 Bad

1 Good 3 Bad

1 Good 7 Bad

-1000

-500

0
Cart Pole Alternately Training

3 Good

1 Good 1 Bad

1 Good 3 Bad

1 Good 7 Bad

-1000

-500

0
Cart Pole Online Training

3 Good

1 Good 1 Bad

1 Good 3 Bad

1 Good 7 Bad

-2000

0

2000

4000

6000

Half Cheetah v2 Alternately Training

3 Good

1 Good 1 Bad

1 Good 3 Bad

1 Good 7 Bad

-2000

0

2000

4000

6000
Half Cheetah v2 Online Training

Fig. 3 Performance and 95% confidence interval of Online Weighted Q-Ensemble comparing groups (3 Best, 1 Good 1 Bad,
1 Good 3 Bad and 1 Good 7 Bad) and Q-Aggregation methods (Average, Softmax Average, TD Error, Softmax TD Error).
Columns separate the Alternate and Online training and the rows present the environments: inverted pendulum, cart pole,
and half cheetah v2. The horizontal line marks the mean of 30 (10 for half cheetah) single runs of the best parameterization,
and the shadowed area represents its 95% confidence interval.
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Table 2 Average relative regret using alternate and
online training.

Training
Mode

Average
Softmax
Average

TDError
Softmax
TDError

Alternate 4.2280 4.7868 5.5208 2.5675
Online 5.5059 6.0599 4.9232 2.3890

Table 3 One of 30 swimmer v2 random ensembles, with
8 randomly generated parameterizations.

LR LR
Activa-

Layer Layer Inter-
Actor Critic tion 1 Size 2 Size val

0.0009 0.0006 ”softmax” 203 211 20
0.0006 0.0001 ”softmax” 417 20 31
0.0001 0.0014 ”softmax” 398 20 60
0.0014 0.0003 ”relu” 202 310 69
0.0007 0.0011 ”relu” 328 352 120
0.0013 0.0014 ”softmax” 87 117 87
0.0004 0.0007 ”softmax” 407 225 31
0.0001 0.0001 ”relu” 326 32 56

interval of, the other aggregations in the 1 Good
3 Bad group, and on par with the single and 3
Best ensemble even in the half cheetah v2 envi-
ronment. As such, even when there are a majority
of bad parameterizations in the ensemble, we can
expect our proposed algorithm to perform similar
to a single finetuned solution.

Regarding the single ablations, there is no
obvious trend as for which has the better per-
formance. In fact, sometimes the intermediate
strategies perform worse than simple Q-averaging.
Clearly, both are required for optimum perfor-
mance.

Table 2 presents the average relative regret
of all strategies. Regardless of the training mode,
the final model (Softmax TDError) has a better
evaluation, standing out in relation to the other
strategies. The latter rank differently depending
on the training mode, making an impartial com-
parison between them impossible, thus it is not
clear which aspect is more important for our
model’s final performance.

The swimmer v2 validation uses 30 differ-
ent ensembles, each with 8 randomly generated
parameterizations. See Table 3 for an example
configuration. The performance of the full model
(Softmax TDError aggregation) was compared
with simple Q-averaging, using online training.
The mean and confidence intervals are 85± 13 for
averaging, and 110± 18 for our model, showing a
significant improvement.

5.2 Learning curves

Figure 4 shows the online training mode learning
curves of the 1 Good 1 Bad and 1 Good 3 Bad
ensembles for the Average and Softmax TDError
aggregations. In the inverted pendulum, Softmax
TDError learns a bit faster than Average, while in
the cart-pole this is behavior is reversed. In both
environments learning is stable with good end per-
formance, with Softmax TDError having higher
mean and lower final variance.

In half cheetah v2 , the performance difference
is huge. Both curves show high variance, but in
both ensemble groups Softmax TDError performs
better. Specifically, Average does not manage to
learn in the 1 Good 3 Bad ensemble, while Softmax
TDError maintains the same performance as in
the 1 Good 1 Bad group.

5.3 Action preference and Q-weights

To better understand our model’s behavior, an
investigation of how the actions are chosen was
made. Figure 5 presents the behavior of the pro-
posed method (Softmax TDError with online
training) on the half cheetah v2 MuJoCo environ-
ment, where the left column shows the weights
assigned to each critic (W), and the right col-
umn shows how often the different actors’ actions
were chosen in the episode. All bad parameteriza-
tions have the same color, while the good ones are
highlighted.

At the beginning of the learning process, W is
uniformly distributed, and at the end the weights
tend to choose the critic with the lowest calcu-
lated TD Error. The same process happens with
the action counts; the beginning of the learning
process has an equal distribution of the chosen
actions, while at the end the choice of actions is
influenced by the quality of the policy and the
critics’ acquired Q-Weights.

The first row shows the 3 Good group, where
each parameterization has a different color. Intu-
itively, the expectation is that both weights and
action choices should stay equally distributed,
since all parameterizations have roughly the same
individual performance. Initially, this is not the
case, as some choices may learn faster than oth-
ers, but, at least for the actions, the end result
is as expected. Note that one critic has a very
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Fig. 4 Learning Curve of Online Weighted Q-Ensemble with 1 Good 1 Bad, and 1 Good and 3 Bad and Q-Aggregation
(Average, Softmax TD Error). All cases are online training, lines present the environments: inverted pendulum, cart pole
and half cheetah v2. The graphic also shows the 95% confidence interval.

low weight, but its actor’s action is chosen nor-
mally (red line). This shows that having a higher
TD-error critic does not always imply a worse
actor.

The second row presents the 1 Good 1 Bad
group, which is composed of two opposing param-
eterizations, with an expectation that the good
parameterization will be chosen from the begin-
ning. Indeed, there is a very clear distinction

9            
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from the Q-Weights, that is reflected in the choice
of actions with little noise. The third row of
Figure 5 presents the 1 Good and 3 Bad group,
which behaves similarly to the 1 Good 1 Bad,
but with more challenges, as there are more bad
parameterizations to compete with.

Finally, the 1 Good and 7 Bad group shown
in the last row struggles to find the good agent.
The Q-Weights do not manage to converge to
the best individual critic, nor is its action chosen
more often than the others. However, the results
in Figure 3 show that the ensemble still reaches
an adequate (although not optimal) performance.

Overall, the best individual agent has both
lower weight and its actions are generally cho-
sen less in larger ensembles. Even so, there is
an improvement in the final performance when
Softmax TDError is used.

6 Conclusion

This article proposed the Online Weighted Q-
Ensemble to decrease the hyperparameter tuning
effort for deep reinforcement learning in continu-
ous action spaces. Based on previous work which
uses an average of Q-ensembles in an actor-critic
setting, we introduced a weighing approach that
adjusts the critics’ weights by minimizing the tem-
poral difference error of the ensemble as a whole.
Additionally, instead of combining the Q-values
directly, they were applied through a softmax
layer, in order to focus on relative preferences
rather than absolute values.

In both simple and complex robotic simulation
environments, our model showed better results
than the standard Q-value averaging, and man-
aged to maintain performance comparable to the
best individual run even if the ensemble included
up to 3-7 bad parameterizations. Validation using
ensembles with 8 randomized parameterizations
also showed a 30% performance increase compared
to normal q-value averaging.

Future Work

Our tests used a single environment, as they
were aimed at the system’s applicability in real-
world robotic applications. In future work, it
would be interesting to extend the simulations
to more environments, and validate its use in
real robots. Other interesting points to be further
expanded in possible subsequent works are the

acceleration of learning and the extension of tests
with further algorithms, such as TD3 and SAC,
or even the combination of completely different
algorithms (Ali and Öztürk, 2023). Furthermore,
while performance with mostly bad parameteri-
zations was adequate, algorithmic improvements
could be made to further suppress their influence,
increasing robustness and decreasing the need to
select good hyperparameter ranges. Finally, in our
experiments the discount rate and reward scale
were kept fixed, and therefore still require manual
tuning. Extensions to include variations of these
hyperparmeters in the ensemble could be consid-
ered, as well as the target update interval and
replay memory size.
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by the european project koroibot fp7-
ict-2013-10/611909. IFAC-PapersOnLine
50(1):6928–6933. https://doi.org/https:
//doi.org/10.1016/j.ifacol.2017.08.1218, URL
https://www.sciencedirect.com/science/
article/pii/S240589631731724X, 20th IFAC
World Congress

Lee K, Laskin M, Srinivas A, et al (2021) Sun-
rise: A simple unified framework for ensemble
learning in deep reinforcement learning. In: Pro-
ceedings of the 38th International Conference on
Machine Learning, pp 6131–6141, URL https:
//proceedings.mlr.press/v139/lee21g.html

Lillicrap TP, Hunt JJ, Pritzel A, et al (2016) Con-
tinuous control with deep reinforcement learn-
ing. In: Proceedings of International Conference
on Learning Representations, San Juan, Puerto
Rico

Lin W, Xie L, Xu H (2023) Deep-reinforcement-
learning-based dynamic ensemble model
for stock prediction. Electronics 12(21).
https://doi.org/10.3390/electronics12214483,
URL https://www.mdpi.com/2079-9292/12/
21/4483

Liu R, Nageotte F, Zanne P, et al (2021)
Deep reinforcement learning for the control of
robotic manipulation: a focussed mini-review.
Robotics 10(1):22. https://doi.org/https://doi.
org/10.3390/robotics10010022

Meijdam HJ, Plooij MC, Caarls W (2013) Learn-
ing while preventing mechanical failure due to
random motions. In: 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems, pp 182–187, https://doi.org/10.1109/
IROS.2013.6696351

Mnih V, Heess N, Graves A, et al (2014) Recur-
rent models of visual attention. In: Advances in
neural information processing systems

Mnih V, Kavukcuoglu K, Silver D, et al
(2015) Human-level control through deep
reinforcement learning. Nature 518(7540):529–
533. https://doi.org/http://doi.org/10.1038/
nature14236

Oliveira. RG, Caarls. W (2020) Comparing action
aggregation strategies in deep reinforcement
learning with continuous action. In: Anais do
XXIII Congresso Brasileiro de Automática -
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Fig. 5 Action count and Q-Weights of Online Weighted Q-Ensemble with 3 Best, 1 Good 1 Bad, 1 Good and 3 Bad, and
1 Good and 7 Bad and Q-Aggregation Softmax TD Error. All cases are online training in half cheetah v2 environment. The
graphic also shows the 95% confidence interval.
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