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ABSTRACT

Computer vision applied to localisation and tar-
get detection has been a field of study in the lit-
erature for some years. Conventionally, MAVs
used to rely solely on distance sensors and ran
on simple and modest embedded devices. The
huge increase of computational power made pos-
sible the use of more complex computer vision
algorithms for real-time embedded applications.
This paper focuses on evaluating different types
of computationally demanding algorithms, such
as accumulator-based image transforms (Hough,
Radon), mathematical morphology and Monte
Carlo approaches, to process data fed by a single
camera in order to aid a MAV to navigate through
an obstacle course.

1 INTRODUCTION

In recent years, there has been a marked increase in re-
search related to multicopters and UAVs (Unmanned Aerial
Vehicles). Recent market research showed that the global
market revenue of drones was worth US$ 6.0 billion in 2017
and is expected to grow up to US$ 11.2 billion by 2020 [1].
The development of UAVs has been driven by recent ad-
vances in computational technology, software development,
lightweight materials, global navigation systems, advanced
data links, sophisticated sensors and component miniaturisa-
tion.

Some UAVs may navigate autonomously by continuously
monitoring data from IMUs and a GPS. However, in order to
perform complex tasks in confined areas, small autonomous
drones will need more complex levels of control autonomy
and extra sensors in order to identify features of its surround-
ings and perform safe and stable trajectories. Computer vi-
sion is an often used method of sensing for small UAVs due to
its reduced mass and energy consumption compared to other
methods, such as LIDARs and sonars [2].

This work aims to develop computer vision-oriented con-
trol and decision-making algorithms in order to allow a MAV
(Micro Air Vehicle) to perform an obstacle course completely
autonomously. More specifically, the hoops element of the

*Email  address(es): manoelcfeliciano@gmail.com,
uardo@gmail.com, edusilva@ele.puc-rio.br, wouter @ele.puc-rio.br

guised-

IMAV2018 course, that consists in making the MAV fly
through a sequence of five hoops, with ellipsoidal geometries,
with five different sizes. The smaller the hoops, the higher the
score, but it increases the complexity of the task as well.

The objective is to properly identify a hoop and infer its
position referential to the MAYV, using image processing tech-
niques. Studies will be carried out on classical methods of
image processing for object detection [3] while evaluating
different algorithms by their accuracy, processing time, noise
and deviation, to verify their performance in the accomplish-
ment of the tasks of interest.

2 METHODOLOGY

The developed MAV is based on the Emlid Navio2 flight
controller paired with a Raspberry Pi 3 microcomputer. The
system will receive environment inputs via a single Raspberry
Pi Camera, pointed forward.

For the hoop detection (a hollow ellipse), which in the
present work is considered to be almost a circle, the goal
is to estimate the coordinates of the centre of the shape, x,
and y,, and the radius, p. In order to achieve that, a mix of
different circle detection approaches (Accumulator-based and
Monte Carlo) with different methods of image pre-processing
(mathematical morphology, clustering and fuzzy segmenta-
tion) were used. In total, 7 different combinations were eval-
uated, they are: Random Sampling Consensus (RANSAC)
using a binary image; Randomised Circle Detection (RCD)
using a binary image; RCD using a binary image obtained by
clustering; Radon Transform over a fuzzy-segmented image;
Hough Transform using a binary image obtained by cluster-
ing; Hough Transform using a fuzzy-segmented mask; Hough
Transform using a greyscale image obtained from the Lab
colour space. All the methods were implemented using the
Python language and the OpenCV library.

2.1 Accumulator-based approaches

Accumulator-based approaches use a “voting array” with
N dimensions, each corresponding to a parameter of the shape
to be detected. In case of a hoop, the three necessary param-
eters results in a 3-dimensional array. The two most common
methods for accumulating the array are the Hough transform
and the Radon transform.

The conventional way of implementing the Hough
method involves determining, for every segmented pixel in
a binary image, all possible circles that might contain said
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pixel, and then mapping the parameters of these circles to the
accumulator array. Each element of the accumulator array
represents a number of votes for the possible circles present
in the image. The presence of the local maximums indicate
strong evidence of circles with parameters described by their
coordinates in the accumulator array [4]. Building a 3D accu-
mulator array is very computationally demanding. In case of
large images, the controller performing this kind of algorithm
could experience memory issues, since the large amount of
possible parameters generates an even larger accumulator ar-
ray [4]. Because of this, the OpenCV implementation of
the Hough transform for circles uses a technique called the
Hough Gradient Method that uses just a 2D accumulator. This
method receives, as function parameters, a radius threshold,
limiting the radius of found circles to a minimum of 10 pix-
els and maximum of 250 pixels, high threshold for the Canny
edge detection of 50, the low being twice smaller, and the ac-
cumulator threshold for circle centres of 35. These parame-
ters were empirically chosen by experimenting with a variety
of images and footage.

As for the Radon method, the density of each element of
the accumulator array corresponds to the match between the
image and a template generated using the parameters given
by the coordinates of the given element [5]. This match is ob-
tained by calculating the inner product between a segmented
image emphasising the hoop (e.g. using a fuzzy membership
function) and the projection of the template into a blank im-
age.

2.2 Monte Carlo approaches

Monte Carlo approaches form a class of algorithms that
relies on the repeated random sampling of the process in-
puts. They come as an alternative when numerical or analytic
strategies are not practical or possible for the solution. Fur-
thermore, they benefit from the fact that they do not need an
accumulator. There are two common methods for detecting
circles which use this kind of approach: the Random Sample
Consensus (RANSAC) and the Randomized Circle Detection
(RCD) algorithms.

The RANSAC algorithm proposed by Fischler and Bolles
[6] is a classic implementation of this approach in the com-
puter vision field. Its working principle is based on the robust
estimation of a number of parameters from a model using
a random number of hypothesis. The main difference from
other common robust parameter estimation algorithms is the
use of the smallest number of observations possible to obtain
the initial solution of the problem. This is achieved by first
solving for the model using three random samples each time
and then verifying the degree of trust of the estimations based
on the inliers that follows a predefined threshold. The output
of the algorithm is given by the estimation with the highest
degree of trust in a voting procedure. Therefore, the main ad-
vantages of the algorithm lie not only in its robustness to the
presence of outliers but also in its efficiency. It is important

to note that, for the RANSAC method in this work, the edges
of the hoop are not detected using Canny edge detection, but
using the external contour retrieval OpenCV function.

Following a different strategy, the RCD algorithm pro-
posed by Teh-Chuan Chen and Kuo-Liang Chung is based
on a voting procedure in the parameter space. It works by
first selecting 4 random edge pixels from the image using
a distance criterion to determine the existence of a possible
circle. Further, it verifies the circle candidate by using an
evidence collection process such as the number of edges pix-
els that lies inside it [7]. This algorithm uses a number of
thresholds to achieve the previous strategy with the follow-
ing empirically determined values for the test environment.
The distance threshold, limits the distance between a circle
candidate and each edge pixel to 40 pixels. The ratio thresh-
old, limits the ratio between each edge pixel and the number
of pixels in the boundary of the circle candidate to 0.5. The
minimum distance between two edge pixels of a possible cir-
cle is 10 pixels. The circle detection task is stoped if there
are less than 10 edge pixels in the set. Finally, the maximum
number of attempts in detecting a circle is set to 10.

2.3 Image pre-processing

As described in sections 2.1 and 2.2, each method needs
to work with a segmented image, that is, an image that em-
phasises the hoop and/or its features by combining differ-
ent colour space channels of the capture, so computer vision
algorithms such as the Hough Transform can easily detect
the correct edges in the image, as the present noise is mit-
igated. The standard colour space used by cameras is the
RGB (Red-Green-Blue). In this work, however, the segmen-
tations are obtained using the HSV (Hue-Saturation-Value)
and Lab (Lightness-green/red-blue/yellow) colour spaces, be-
cause these setups enhance the contrast between the hoop and
the background.

Figure 1: Different methods of image pre-processing. (a)
Original frame. (b) Binary segmentation. (c) Fuzzy segmen-
tation. (d) KMeans mask. (e) Lab ’a’ channel.

The simplest form of segmentation is the generation of a
binary image by verifying the pertinence of each pixel to a
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previously-set threshold. In the case of the HSV channels,
applying a threshold to the "Hue’ channel, for example, will
emphasise the pixels belonging to a certain range of colours.
Figure 1b is an example of a binary segmentation. This kind
of image can be further improved by applying morphological
operations, such as erosion, to remove noise, and dilation, to
close gaps in the image. For the RANSAC algorithm, the im-
age is generated by applying a threshold to the "Hue’, Satura-
tion and Value channels, respectively, at the intervals (30;60),
(32;255) and (50;255) and, then, eroded once and dilated 4
times in order to remove noise and close gaps. On the other
hand, for the RCD algorithm, the image is generated by ap-
plying a threshold only to the "Hue’ channel, at the interval
(30;80) and, then, dilated 3 times. These ranges were empir-
ically established by experimenting with a variety of images
and footage.

The Fuzzy segmentation works likewise, but instead of
generating a binary image, it generates a greyscale image
where the value of each pixel represents its membership
grade to the specified group of parameters (in the HSV im-
age, the parameters would be colour, saturation and bright-
ness). The obtained image is, then, used as a mask over
the original greyscale image, resulting in Figure lc. In this
work, the fuzzy membership function used is just a trape-
zoidal function applied to the "Hue’ channel, with parameters
P = (20;40;60;80).

The KMeans segmentation uses the Scikit-learn cluster-
ing function to identify clusters of pixels with the same
colours in the HSV space. Then, this information is used to
generate a mask that better emphasises the hoop and hides
unwanted portions of the image. Figure 1d shows a binary
image used as a mask, obtained by the KMeans method.

3 TESTS AND RESULTS
3.1 Preliminary observations

During the development phase, each hoop detection
method was tested a set of pictures of hoops similar to the
ones used in the obstacle course. This is to ensure that ev-
ery method would display reasonable levels of detection rate,
accuracy and processing time.

One of the most important parameters for using computer
vision in drones is the processing time of each frame. Op-
timisations such as subsampling the frames down to 160 px
width, maintaining the aspect ratio, had to be made in order
to improve the real time performance. However, this was not
enough for the Radon method which was able to correctly de-
tect the hoop, but needed 37 minutes and 46 seconds to pro-
cess a single frame in the Raspberry Pi, an impractical amount
of time for live applications. The result for this particular al-
gorithm was expected since it is based on a 3D accumulator
and does not have any optimisations, other than image sub-
sampling, implemented. Thus, this method was not included
in the next phase of testing. It should be noted that better re-
sults are expected with a GPU due to the parallelizable nature

of this method.

3.2 Live testing

This phase of testing consisted in comparing the perfor-
mance of each algorithm using the MAV’s hardware for vary-
ing positions in relation to the hoop, as well as different view-
ing angles. The MAV was kept at the same position on a still
surface at all times with its motors turned off.

In each test, the Pi Camera captured a set of 100 frames
after which the Raspberry Pi proceeded to process the frames
using the methods chosen, finding the parameters of the hoop
in pixels, proportional to the camera resolution. The parame-
ters were then combined with known information, such as the
actual average radius of the hoop (the hoop used is ellipse-
shaped, with minimum diameter of 780 mm and maximum
diameter of 860 mm, an average of 820 mm), camera reso-
lution and field of view (for the Pi Camera, it is 62.2° hor-
izontally and 48.8° vertically), in order to estimate the rel-
ative position between the MAV and the hoop. Thereafter,
the methods were evaluated by the root mean square error
(RMSE), standard deviation and confidence interval (95%)
of the measured longitudinal distance to the hoop and the eu-
clidean distance (Y and Z axes) to the centre of alignment,
processing time and the ratio of valid detections.

First, the hoop was positioned at the minimum distance of
detection from the MAV, 140 cm. Then, in steps of 30 cm, the
hoop was brought farther from the MAV until the distance of
410 cm. In this test, not only the perceived radius of the hoop
was smaller, but the perceived thickness of the edges was also
thinner, affecting the image segmentation. Furthermore, the
changes in luminosity in different parts of the room where the
tests were conducted might interfere with the hoop detection,
requiring each algorithm and image segmentation method to
be robust against these changes.

Algorithm Pre-processing (ms) Detection (ms)
Hough Fuzzy 16.90 + 1.12 6.38 £5.13
Hough KMeans 438.78 £+ 166.69 62.43 +14.48
Hough Lab 9.64 + 0.53 4.28 £0.70
RANSAC 44.25 + 2.60 23.22 £ 6.71
RCD 4425 +£2.11 50.71 &£ 13.59
RCD KMeans 441.11 £ 177.52 1334.39 4 564.57

Table 1: Average times (& standard deviations) required for
each algorithm to process one frame and detect the hoop.

Table 1 shows the average processing time plus standard
deviation required for each method to pre-process an image
and detect the hoop over all the distances tested. All the
methods kept consistency even when the rates of detection
seen in Figure 2a dropped to very low values. The Hough
Fuzzy, Hough Lab and RANSAC methods displayed pro-
cessing times fast enough for high-framerate applications.
The processing time is noticeably affected by the image
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Figure 2: Algorithm performance for different distances between 1400 mm and 4100 mm. (a) Ratio of valid detected frames.
Notice how all the Hough methods achieved 100% detection. (b) Estimated distance along longitudinal axis for each algorithm,
with reference distances and confidence interval of 95%. (c) Estimated distance over the frontal plane (YZ axes) for each
algorithm, with reference distances and confidence interval of 95%. The reference distance along the YZ plane is (0;-200) mm
for all reference distances along the X axis, except between 2600 mm and 3200 mm, where it was set to (-300;-150) mm due to

placement difficulties in the testing room.

pre-processing method chosen, as the methods that use the
KMeans clustering took longer on average to process the seg-
mented frame.

Figure 2a shows how the detection rates of the hoop
drops as the distance from the camera increases. All the
Hough methods achieved 100% detection rate at all distances,
while the other methods displayed a falloff in detection rates
past a certain distance. This happens because the hoop be-
comes very thin at increased distances, becoming faded after
morphological operations, impairing detection by the Monte
Carlo-based methods. This doesn’t affect the Hough-based
methods because those rely on Canny edge detection, identi-
fying the presence of the hoop as long as it contrasts with the
background.

Figure 2b displays the evolution of the average distance
estimation and confidence interval along the longitudinal axis
(X axis), calculated based on the ratio between the hoop size
in the capture, in pixels, and the actual hoop size, in millime-
tres. Figure 2c displays the average estimation and confidence
interval of the euclidean distance over the YZ plane (vertical
and lateral axes) between the hoop and the centre of the cap-
ture.

It can be said that the Hough Fuzzy, Hough Lab and

RANSAC methods were the best performers in this test by
demonstrating high detection rate, low processing time, the
least errors compared to other methods and little dispersion
of results. It can also be concluded that the perceived radius
of the hoop is greater than its actual radius, leading the algo-
rithms to estimate shorter distances to its centre. This effect
may be due to the eccentricity of the hoop, causing the de-
tected radius to be its semi-major axis instead of its mean
radius, preset in software.

The other methods perform worse due to various reasons.
Besides the long processing time, the Hough KMeans method
couldn’t correctly identify the hoop, as evidenced by the al-
most constant distance estimate regardless of the actual dis-
tance. Furthermore, both RCD methods could only properly
detect the hoop within close proximity, making them unreli-
able for longer distances.

Another round of tests consists on evaluating the perfor-
mance of each algorithm in detecting a rotated hoop. The mo-
tivation for this kind of test is that the MAV might not always
be perfectly aligned with the hoop, requiring each algorithm
to detect it nonetheless. In addition, each algorithm will per-
ceive the hoop as an ellipse with increasing eccentricity as the
angle of rotation increases. The routine for this test is similar
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Figure 3: Algorithm performance for different hoop rotation angles at a distance of 2300 mm. (a) Ratio of valid detected
frames. At this distance, both RCD methods had very low and O detection rates. (b) Estimated distance along longitudinal
axis for each algorithm, with reference distances and confidence interval of 95%. (c) Estimated distance over the frontal plane
(YZ axes) for each algorithm, with reference distance ((0;-150) mm for every test) and confidence interval of 95%. The three
algorithms with best results (Hough Fuzzy, Hough Lab and RANSAC) kept consistency in measurements with good detection

ratios.

to the previous one: starting from 0° rotation (with the MAV
completely facing the hoop head on), in 10 steps of 10°, up to
90° (hoop sideways in relation to the MAV), each algorithm
evaluates a set of 100 frames per step.

This test was performed by placing the hoop at 2300 mm
from the camera. This distance was chosen because the hoop
occupies a reasonable area of the frame. However, both RCD
methods underperform, as shown in Figure 2b. In spite of
that, both of them were also subjected to these new tests. The
RCD KMeans results were omitted in Figure 3, because its
valid detection frames ratio remained null for all analysed
cases.

Figure 3a shows the detection rate of valid frames as the
angle of the hoop increases. As expected, detection rates drop
past certain angles, except for the Hough KMeans method
that, as observed in previous tests, might be detecting noise
instead of the actual hoop.

Figures 3b and 3c show the distance estimations along,
respectively, the longitudinal axis and the YZ plane, as the
rotation of the hoop varies. As expected, measurements at
angles where detection rates are low are mostly noise, as evi-
denced by the greater dispersion of results past these angles.

An interesting phenomenon in the measurements was
a steady increase in the distance estimation by the Hough

Fuzzy, Hough Lab and RANSAC methods while keeping low
dispersion. As previously said, the estimated distance is cal-
culated from the ratio between the measured radius from the
capture, in pixels, and the actual radius of the hoop, in mil-
limetres. This leads to the conclusion that the estimated ra-
dius found by these algorithms becomes smaller with the in-
crease of eccentricity of the hoop seen from the MAV’s point
of view.

As a final test, each detection method is evaluated on its
ability to detect the hoop while it is partially outside the cam-
era field of view. This test is performed at the constant dis-
tance mark of 2300 mm by the longitudinal axis and increas-
ing distances by the lateral axis, so the hoop can be partially
visible by 25%, 50% and 75% of its total area. The 100% and
0% visibility tests are also included for comparisons.

Figure 4a shows how the detection rate drops as the hoop
moves away from the field of view. The obtained results indi-
cate that the Hough Fuzzy, Hough Lab and RANSAC meth-
ods still can identify the hoop even in situations where it is
not fully contained in the frame.

Figures 4b and 4c show how the visible hoop area affect
the distances estimated by the algorithms. The results confirm
that Hough Fuzzy, Hough Lab and RANSAC algorithms can
correctly identifying the hoop position and radius, in spite of
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Figure 4: Algorithm performance as the hoop moves outside
the camera field of view. (a) Ratio of detected frames. (b)
Estimated distance along the longitudinal axis for each al-
gorithm, with reference distance and confidence interval of
95%. (c) Estimated distance over the frontal plane (YZ axes)
for each algorithm, with confidence interval of 95% and refer-
ence distances of (-1510;-150) mm, with the hoop outside the
frame, and the distance along the Y axis increasing in steps
of 210 mm until (-670;-150) mm, when the hoop is fully into
view.

the partial concealment of the hoop. For visible hoop areas as
low as 75%, these three methods measured similar distances
during valid results, along the longitudinal axis and the YZ
plane. However, regarding this aspect, it is noted that the
RANSAC method outperforms the others, since it returned
adequate measurements for visible hoop areas as low as 50%,
while others start to underperform earlier.

4 CONCLUSION

There are many different algorithms used for implement-
ing computer vision for different applications, each one with
their own advantages and disadvantages. This work evalu-
ated the performance of different combinations between 4 im-
age segmentation methods (binary, fuzzy, Lab grayscale and
clustering) and 4 circle detection algorithms (Hough trans-
form, Radon transform, RANSAC and RCD), focusing in
identifying and measuring a hoop in order to aid a MAV to
traverse it. The best suited algorithms for the task were se-
lected by comparing their better performance and reliability.
The Hough Fuzzy, Hough Lab and RANSAC algorithms pre-
sented shorter processing time, higher detection rates and bet-
ter accuracy.

These 3 methods performed well, however they have

some distinctions that are relevant to the objective of travers-
ing the 5 hoops of the obstacle course. The RANSAC method
works really well for adverse situations, such as detecting a
hoop with high eccentricity (or rotated more than 40°) or a
hoop that is not fully viewed by the camera (regular detection
rate for a visible area as low as 50%). However, the MAV
might not have to deal with these kind of situations, making
the Hough approaches preferable, because of their faster pro-
cessing times and better accuracy, especially the Hough Lab
method, that presented the best performance in the tests con-
ducted.

4.1 Future work

This work has evaluated 7 computer vision approaches
based in different situations with a stationary MAV. In the fu-
ture, new tests will be conducted with a flying MAV in order
to evaluate different algorithms, considering the effects of vi-
bration and motion.

Furthermore, the performance of other methods and their
combinations with pre-processing algorithms will be evalu-
ated in future works, including methods based in deep learn-
ing (with the appropriate hardware support).
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