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Abstract—Setting up the correct hyperparameters in reinforce-
ment learning (RL) algorithms is an important part to achieve
good performance in its execution and convergence. Manual
adjustment for these hyperparameters is not a good practice
because it consumes too much time and effort, therefore, it is
advisable to use computational tools to optimize this tuning. Evo-
lutionary computation (EC) techniques can be a good tool to tune
and optimize the hyperparameters in the different algorithms. In
this project we used the genetic algorithms (GA) approach to find
the value of the hyperparameters that best fit the performance
of the SARSA and Q-learning RL algorithms, addressing the
underactuated pendulum swing-up task, maximizing the final
rewards acquired and the agent’s learning speed. We obtained
good solutions with a fairly simple algorithm, but required
multiple random restarts of the GA to escape local minima.

Index Terms—genetic algorithms, reinforcement learning, hy-
perparameters, tuning.

I. INTRODUCTION

Performing the selection of hyperparameters in different
reinforcement learning RL algorithms is an important stage
that affects their performance [1]. This hyperparameters ad-
justment can be done manually, verifying if the algorithm
converged by testing the obtained policy once its execution
has finished. However, performing manual adjustment is not
a recommended practice because it consumes too much time
and effort. For this reason the use of computational tools is
advisable to perform hyperparameter tuning [2]; within these
tools, a good option is to apply techniques of evolutionary
computation EC for the tuning and optimization of the hy-
perparameters in the different algorithms, since these methods
have shown good results in different tasks [3], [4], [5] and [6].

RL is a technique that bases its operation on the maximiza-
tion of rewards received by an agent that interacts with its
environment following a certain control policy[1]. To achieve
the maximum reward it is necessary that the agent follow
an optimal policy, which is evaluated and updated during the
training of the agent as the result of its experience with the
environment.

Within RL there are different methods and algorithms
that are developed and used to solve different tasks. Within

which, two of the algorithms most used are the SARSA
and Q-learning algorithms for their easy implementation and
understanding since they do not require a great computational
effort for their execution and can be implemented easily in
any programming language.

EC, contrary to RL bases its operation in evolution: where
an initial population of individuals, under crossing and muta-
tion processes produces descendants probably better, than the
parents, and then performing the selection of best individuals.
This process is performed iteratively a certain number of times
until an optimal solution for the problem is found.

For this reason, in this project, we used genetic algorithms
GA to perform the tuning of the hyperparameters of the
algorithm SARSA(λ) and Q(λ), applied to the "underactuated
pendulum swing- up" task, the algorithm operation is sub-
sequently verified with the parameters found in a pendulum
model simulator, selecting the parameters that maximize the
end performance of the algorithm as well as stable operation.
In this way, although it is not possible to perform this opti-
mization in a real robot, we can perform it in a simulator and
then learn in the real world with the found optimal parameters.

This paper is organized as follows: In section 2 a revision for
previous work. Section 3 describes RL, EC and the pendulum
problem. Section 4 and 5 present the methodology used and
the results obtained respectively and finally, in section 6
and 7 we talk about the discussion, conclusions and future
implementations.

II. RELATED WORK

Parameters tuning is not a recent problem, much research
in this field have been done. For example, [7] perform pa-
rameter adjustment based on reliability applied in the grid
world problem, or [8] which solve maze tasks applying Bayes
inference to balance exploitation and exploration in model-
based RL algorithms. In addition, [9] use Bayes estimation to
apply particle filtering in order to estimate hyperparameters in
RL model.

[10] presents a different approach using biological-based
neuromodulators to tune hyperparameters in an adaptive form



in Markov decision tasks. Another interesting research is [11]
which use GA for to find the step-size and the temperature
decreasing hyperparameters of RL applied in a real robot.

In contrast, [12] explains about the influence on perfor-
mance of the optimal hyperparameter selection for Deep Q-
learning algorithms.

Finally, a more recent work [13] shows that is possible to
combine the bayesian optimization with gaussian process to
optimize hyperparameters of RL algorithms.

III. THEORETICAL BACKGROUND

A. Reinforcement Learning

The main objective of RL is the reward maximization
through the actions performed by an agent interacting with
his environment in a certain state following a certain policy.
During training, the agent changes his policy as the result
of his experience with the environment [1]. Therefore, the
objective of the agent is to maximize the expected rewards
by optimizing a policy π(s)→ a that maximizes the optimal
action-value function:

Q∗(s, a) = E{rt+1 + γmaxa′Q∗(st+1, a
′)|st = s, at = a}

Within RL, the algorithms most used for their simplicity are
SARSA (λ) and Q(λ) which learn on-policy and off-policy
respectively. In the implementation of these algorithms appear
different hyperparameters that determine their behavior, such
as: the discount rate (γ), learning rate (α), decay rate (λ),
exploration rate (ε), observations resolution and finally the
initial values of the Q-table.

B. Evolutionary Computation

The area of evolutionary computation is that which incor-
porates in its algorithm the natural processes of mutation,
crossing, reproduction and selection applied to the optimiza-
tion of functions within a computer, thus achieving to use the
power of the natural process of evolution as an alternative
in the design of hardware and software[14]. In this way,
this process is performed iteratively a certain number of
times until an optimal solution for the problem is found by
the evolution [15]. Considering that each individual of the
population is a solution, the GA become a good alternative to
search for solutions to optimization problems because they can
address problems of non-linear, stochastic or discontinuous
type, since it does not require a gradient generating a set of
different solutions in each iteration in which the best solution
approximates the optimal solution of the problem [16], [17].

C. The "Pendulum Problem"

One of the best known classical control problems is the
"underactuated pendulum swing-up" task, which is a simple
dynamic system used to evaluate and compare the performance
of different algorithms of RL [18], the main one reason is
because this system has only 2 dimensions, defined by the
state: x = [ϕ, ϕ̇], where ϕ = position and ϕ̇ = velocity, and
a single control action: the voltage u of the pendulum motor.

The equation of motion of this system is given by:
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Where the model parameters are: pendulum inertia (J), pen-
dulum mass (M ), gravity (g), pendulum length (l), damping
(b), torque constant (K) and rotor resistance (R).

This system works in the following way: the pendulum starts
in the resting state with the following state:

x0 = [π, 0]

Where the position consists of the angle that the pendulum
has with respect to the axis Y and the velocity consists of the
angular velocity of the pendulum. In this way, the objective is
to balance the pendulum in the state:

x = [0, 0]

Applying for this, a control signal (u) on the motor limited
to u ε [−3, 3] V, in order to keep the pendulum balanced. For
this task, the following quadratic reward function is defined:

r(xt, ut) = −xt+1Qx
>
t+1 −Ru2t

with

Q =

[
5 0
0 0.1

]
and

R = 1

Which results in a quadratic function whose maximum value
is at the point x = [ϕ, ϕ̇] = [π, 0] and which quadratically
discounts the values of position, velocity and action different
from 0.

IV. EXPERIMENTAL METHODOLOGY

One of the simplest ways to approach the pendulum task
is to approximate the function-value through a process of dis-
cretization and use model-free dynamic programming (direct
RL). For this project we used a MATLAB function which
contains the Q-learning and SARSA algorithms implemented.

As mentioned before, the main objective of RL is to
maximize the rewards obtained by the agent, however it is also
necessary that the convergence method is stable, this means
that the sum of rewards once the algorithm has converged
is kept within a range without many variations. Taking these
aspects in mind, in this case we have a multi-objective
problem where we need to maximize the end performance
and minimize the difference between the last 50 episodes. On
the other hand, the GA Toolbox of MATLAB optimizes the
functions using minimization of the objective function or also
called fitness function.

We must therefore define several objectives in a single
function, this was done by the following equation where under
a single function is calculated the maximization of the end
performance and the minimization of the error of the last
episodes:

fitness_function = −2(average_reward) + error



Where fitness_function is the objective function, aver-
age_reward is the average reward obtained in the last 50
episodes and error is the Mean Square Error (MSE) of the
reward in the last 50 episodes. As can be seen in the previous
equations, another mathematical arrangement was made by
multiplying by 2 the average reward to turn it into a goal
with greater importance than the error.

Similarly, the constraints of the problem are defined. In this
case, we are doing a tuning of hyperparameters, then, we need
to define the numerical limits within which are the values of
these parameters. The literature explains that the learning (α),
decay (λ), exploration (ε) and discount (γ) rates are between
0 and 1 [1]. Therefore, the restrictions for these values are the
following:

0 < α < 1,
0 < λ < 1,
0 < ε < 1,
0 < γ < 1

Likewise, the other variables to be tuned are the resolution
of discretization of the position, velocity and pendulum actions
and the initial values of the Q-table. Because the position,
speed and action are within the range: [Vmin, Vmax], where
Vmin = −π rad and Vmax = π rad for the position Vmin =
−12π rad/s and Vmax = 12π rad/s for the speed and Vmin =
−3 volts and Vmax = 3 volts for the action, it is possible to
perform a discretization of these 3 variables so that each of
them varies a value of ∆step each state, this is:

∆step =
Vmax − Vmin

Resolution
and:

1 ≤ observations_resolution ≤ 100,

1 ≤ actions_resolution ≤ 10,

−1000 ≤ Initial_value ≤ 1000

Where observations_resolution is the resolution for the
variable of position and velocity, actions_resolution is the
resolution of actions and Initial_value is the initial value of
the Q table.

Finally, the Table I summarizes all the constraints and its
type of data used for the construction of the algorithm. Note
that we approximated the open limits by closed limits with
offset ∆ = 10−5.

TABLE I
CONSTRAINS FOR GA OPTIMIZATION

Variable Minimum value Maximum value data type
α 0 + ∆ 1 − ∆ float
λ 0 + ∆ 1 − ∆ float
ε 0 + ∆ 1 − ∆ float
γ 0 + ∆ 1 − ∆ float

obs_res 1 100 integer
action_res 1 100 integer

initial_value -1000 1000 integer

Finally, with the restrictions, the limits and the objective
function defined, were implemented the fitness function, the
evaluation function and the main evolution program. The main
program creates the initial population within the constraints
and send the initial parameters to the fitness function where is
calculated the objective value in function of the average reward
added with the MSE of the last 50 episodes gotten from the
RL program until the stopping criteria is reached. Next, the
founded values are tested with the evaluation function for 10
times in order to get the mean algorithm behaviour and get
average reward, rise time and MSE values. So, this action is
continually repeated until the error is as small as be possible.
Finally, once the program is finished, the algorithm behaviour
with the best parameters is ploted in a graph to show the
performance obtained.

V. RESULTS

After having carried out different experiments, the imple-
mented algorithm was able to find many set of hyperparam-
eters for this task. Tables II and III show the five sets of
hyperparameters with highest fitness found by the optimization
procedure.

TABLE II
BEST HYPERPARAMETERS OBTAINED FOR SARSA ALGORITHM

Exp α γ ε λ obs act init_Q
1 0.1171 0.9383 0.0140 0.8453 34 3 54
2 0.1959 0.9571 0.0347 0.7943 32 3 −216
3 0.0685 0.9147 0.0262 0.9192 34 3 18
4 0.3054 0.9712 0.0274 0.7069 28 3 −320
5 0.9992 0.9172 10−5 0.5572 40 3 0

TABLE III
BEST HYPERPARAMETERS OBTAINED FOR Q-LEARNING ALGORITHM

Exp α γ ε λ obs act init_Q
1 0.6711 0.9891 0.0004 0.4212 50 3 −86
2 0.8944 0.9377 0.0056 0.2879 75 3 23
3 0.4738 0.9406 0.0136 0.5115 75 3 40
4 0.4594 0.9479 0.0257 0.4940 74 3 −28
5 0.5811 0.9784 0.0434 0.3986 75 5 −65

Their respective performances are shown in Tables IV and
V, and are quite close together when compared per algorithm,
but with sometimes very different hyperparameters. In addition
we can confirm this with the learning curve graphs showed
in Figures 1 and 2. In particular, the learning rate α and
trace decay rate λ are not very sensitive. The same holds for
the initialization, although it should have a value around 0.
Interestingly, we observe that the optimal number of actions
is quite low, even though theoretically we could achieve
best performance increasing the actions. We attribute this to
the limited number of episodes used for training. We are
performing 1000 episodes, therefore, with more actions, we
are not be able to guarantee that the algorithm manage to
learn a reasonable policy during training.

In addition, we notice that the optimal observations reso-
lution found are quite different for both algorithms. In the



SARSA algorithm this value is around 28-40 contrary to
Q-learning which optimal value is around 50-75. Perhaps
SARSA, which calculates the value function of the noisy
exploration policy, cannot take advantage of a more accurate
value function representation.

TABLE IV
PERFORMANCE OBTAINED FOR SARSA ALGORITHM WITH THE

HYPERPARAMETERS FOUND

Experiment End Performance MSE Rise Time
1 −621.99 42.294 551
2 −641.87 16.485 206
3 −659.83 66.117 634
4 −674.67 0.0063 142
5 −688.14 0 175
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Fig. 1. Performance obtained for SARSA algorithm

TABLE V
PERFORMANCE OBTAINED FOR Q-LEARNING ALGORITHM WITH THE

HYPERPARAMETERS FOUND

Experiment End Performance MSE Rise Time
1 −553.37 0 357
2 −570.10 0 571
3 −570.1 0 875
4 −571.54 2.054 664
5 −574.28 1.893 709
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Fig. 2. Performance obtained for Q-learning algorithm

Finally, Table VI show the hyperparameters for the best
results found, in addition, Fig. 3 and 4 show convergence

TABLE VI
BEST RESULTS FOR SARSA AND Q-LEARNING

Variable | SARSA Q-learning
α 0.1171 0.6711
γ 0.9383 0.9891
ε 0.0140 0.0004
λ 0.8453 0.4212

obs_res 34 50
action_res 3 3

initial_value 54 −86

and value function of SARSA and Q-learning for the best
set chosen and showing a curve learning comparison in Fig 5
respectively.
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Fig. 3. Best results for SARSA algorithm
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Fig. 4. Best results for Q-learning algorithm

0 100 200 300 400 500 600 700 800 900 1,000
−4,500

−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

Episode

R
ew

ar
d

SARSA
Q-learning

Fig. 5. Performance comparison for SARSA and Q-learning algorithm

VI. DISCUSSION

The different results from Section V were each the outcome
of a full GA run, and present the five best runs from a total of



850 such runs for each experiment (SARSA and Q-learning).
It is clear that the best fitness achieved from a single GA run
is quite noisy, indicating many local minima. In fact, many
runs got stuck in minima that did not manage to swing up the
pendulum at all. As such, we recommend the use of GAs with
automatic restart strategies [19].

Looking further at the parameters of the best 40 runs of the
Q-learning experiment, we can see in Figure 6 that the learning
rate α and trace decay rate λ are negatively correlated: a higher
α implies a lower λ. This is expected because both increase
the update to the value function. The correlation between α
and the exploration rate ε is also expected. α acts as a noise
filter with lower values causing smaller updates and therefore
more filtering. Higher ε increases the exploration noise, and
therefore requires more filtering.

A less well-known correlation exists between the discount
rate γ and the value function initialization, shown in Figure 6.
A higher γ implies a lower initialization. Initializing the
value functions with high values encourages exploration [1].
Since all rewards are negative, a higher γ reduces the overall
value function, reducing the required initialization in order to
achieve the same amount of exploration.
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Fig. 6. Correlation for hyperparameters obtained for Q-learning algorithm

VII. CONCLUSION AND FUTURE WORK

As presented in this paper, the use of EC techniques to
find the different hyperparameters of the RL algorithms is a
recommended alternative capable of obtaining good results
with a fairly simple algorithm. On the other hand, it was
necessary to implement a multi-restart function in order to
have diversity in the results and avoid falling into local minima
during the process of optimization and search of parameters.

Finally, is necessary to improve the multi-restart function
and the GA algorithm and test with another RL algorithms
in order be able to make a better comparison of results as
we said before. This implementation is pending for future
implementations.
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