
Learning while preventing mechanical failure due to random motions

H. J. Meijdam, M. C. Plooij and W. Caarls

Abstract— Learning can be used to optimize robot motions
to new situations. Learning motions can cause high frequency
random motions in the exploration phase and can cause failure
before the motion is learned. The mean time between failures
(MTBF) of a robot can be predicted while it is performing these
motions. The predicted MTBF in the exploration phase can be
increased by filtering actions or possible actions of the algo-
rithm. We investigated five algorithms that apply this filtering
in various ways and compared them to SARSA(λ) learning.
In general, increasing the MTBF decreases the learning per-
formance. Three of the investigated algorithms are unable to
increase the MTBF while keeping their learning performance
approximately equal to SARSA(λ). Two algorithms are able to
do this: the PADA algorithm and the low-pass filter algorithm.
In case of LEO, a bipedal walking robot that tries to optimize
a walking motion, the MTBF can be increased by a factor
of 108 compared to SARSA(λ). This indicates that, in some
cases, failures due to high frequency random motions can be
prevented without decreasing the performance.

I. INTRODUCTION

With robotic systems assisting humans in every day life,
it is increasingly important for systems to be able to au-
tonomously adapt to new situations. The field of Reinforce-
ment learning contributes to this autonomous behaviour. Re-
inforcement learning can be applied to let physical systems
learn to perform a motion without having prior knowledge
of this system. During the learning process large stresses
occur in these physical systems and they need to be able to
withstand these stresses in order to prevent failure.

The bipedal robot LEO (see Fig. 1a) was designed to
withstand large stresses while learning an optimal gait au-
tonomously with little or no prior knowledge. Unfortunately
the robot fails too quickly for it to learn a stable gait from
scratch. During the learning process there are three main
causes of failure: taking steps, falling and random motions.
The first two causes are essential parts of the learning process
which can only be reduced by faster learning or redesigning
the robot. The third is specific to the learning algorithm used.
Failure occurs in the system due to high frequency random
motions in the early learning phase. These motions are not
an essential part of the learning process. Therefore it should
be possible to reduce failure without significantly influencing
the learning process.

The rest of this paper is structured as follows. In Section
II other reinforcement learning experiments with physical
robots are covered, specifically how they prevent damage
from exploration. Reinforcement learning is covered in Sec-
tion III. In Section IV the mean time between failures
(MTBF) of LEO’s gearboxes are linked to action signals.
Various algorithms that could be used to increase the MTBF

(a) LEO (b) Dynamixel RX-28 (c) Model of LEO

Fig. 1: LEO, one of the bipedal robots of the Delft BioRobotics
Laboratory [1], [2]. In Fig. 1b one of its joints is displayed.
These joints are actuated by Dynamixel RX-28 motors which are
connected to the robot via elastic couplings. In Fig. 1c a model
of LEO is displayed. With this model the learning process of
algorithms can be simulated.

are presented in Section V. The performance of these algo-
rithms is quantified in Section VI. In Section VII the per-
formance and the MTBF of the algorithms are compared to
each other while learning to swing up an inverted pendulum.
The two most promising algorithms are tested on a physical
inverted pendulum in Section VII. In Section VIII these two
algorithms are tested on a simulation of LEO.

II. RELATED WORK

Reinforcement learning has been applied successfully to
physical robots in previous research. In [3] policy gradi-
ent reinforcement learning is used to search for the opti-
mal quadrupedal locomotion. Policy gradient reinforcement
learning can assure smooth policies and can substantially
increase the learning speed. To successfully apply this learn-
ing method, prior knowledge of the system is essential.
The dependency on prior knowledge makes this method
potentially less effective at adapting to new situations. In [4]
actor-critic learning is applied. The random motions due to
exploration are reduced by low-pass filtering with a discrete
first order filter. Filtering at joint level is applied to protect
the gearboxes from large differences in the torque signal.
Although prior knowledge is not essential when applying
actor-critic learning, it is added to get the necessary learning
speed when learning on the physical robot.

We apply SARSA to quickly learn an optimal gait, on-line,
on-policy and without adding prior knowledge. A disadvan-
tage of learning with this method is the high frequent ran-
dom motions it generates due to exploration and optimistic



initialisation during initial learning. We aim to attenuate this
disadvantage by various methods of filtering the actions.

III. REINFORCEMENT LEARNING

A reinforcement learning problem is defined by the tuple
<S, A, P, R>. Where S is the set of possible states for the
system to be in, A the set of possible actions the system
can take, P the state transition distribution and R the reward
function. For each time-step t, the system tries to optimise
the discounted sum of future rewards, rt+k:

∞∑
k=0

γkrt+k

Here γ defines how much rewards are discounted. The reward
function and γ need to be specified. The system has to learn
a policy π which takes the optimal action with respect to the
future reward in every state. For this process to take place
it is important that the state transition distribution does not
change. Also the states in S must have the Markov property,
meaning that states must have all the information in them
to predict the future. In the case of LEO the system learns
to apply the optimal voltage, for each joint, in each state
to get the optimal walking gait. These voltages are learned
with the SARSA algorithm which tries to learn optimal state-
action values. The Bellman optimality equation for optimal
state-action values is:

Q∗(s, a) =
∑
s′

P ass′
[
Rass′ + γmax

a′
Q∗(s′, a′)

]
Where s′ is the next state, a′ the next action, P ass′ comes from
the state transition distribution and Rass′ from the reward
function. The algorithm stores an approximation of the state-
action values and updates these, each time-step, with:

Q(s, a) = Q(s, a) + α [rt+1 + γQ(s′, a′)−Q(s, a)]

Here α defines the learning rate of the process.

IV. FAILURE PREDICTION

We need to predict the MTBF of a physical system given
a certain learning algorithm, in order to successfully adapt
the learning algorithms. In this paper we predict the MTBF
of LEO for different action filtering algorithms. Mechanical
failure of LEO is usually caused by a gearbox breaking
down [2]. The last gear in the gearboxes of LEO is usually
the cause of failure. The material of this gear is able to
withstand a number of stress cycles before it fails due to
fatigue. A method to link complex combinations of cycles
to fatigue failure is described by [5]. In this section the
following procedure is used to predict the MTBF. First we
determine the stress cycles that contribute most to fatigue
failure. Second we approximate the maximum torque on the
gear last gear during these cycles. Third we calculate the
maximum stress in the last gear due to this torque. Fourth
we approximate the number of times this stress cycle can
be withstood. Finally we predict the MTBF based on the
predicted failure.

Stress cycles: The condition in which cycles occur is
defined by looking at the conditions in which the gearboxes
actually fail. LEO is able to walk for more than eight
hours without failing while walking with a pre-programmed
controller. However, the gearboxes of LEO fail after five
minutes while performing random motion due to learning.
Apart from falling, the impact of which is minimized by
foam padding, the difference between the two situations is
the number of backlash re-engagements (i.e. when the torque
on the gear changes sign, the backlash is experienced and
the gears re-engage). This leads to the assumption that the
stress cycles during backlash re-engagement have the largest
contribution to failure. We also assume that one backlash re-
engagement leads to one stress cycle. The stress cycle can
be expressed as a function of the torque while the gears re-
engage.

Maximum torque: In order to predict the MTBF, the
maximum torque on the last gear during a cycle needs
to be calculated. In Fig. 1b one of the motors used in
LEO is depicted. The motor is connected to a limb via an
elastic element. This elastic element is applied to protect the
gearbox. The last gear of the gearbox is directly coupled
to the elastic element. A simple model can be constructed
by assuming zero friction. This model is visualized in Fig.
2. The angle θe in this model is a relative angle between
the motor and the joint. θe0 is the equilibrium position of
the elastic element and ∆θe the angular displacement in
the elastic element, θbl is the backlash between the gears,
Tm is the torque supplied by the motor, Ireflected is the
reflected inertia of the motor and k is the stiffness of the
elastic element. The maximum torque is calculated for the
situation in which the elastic element is not displaced and
backlash re-engagement occurs. This means that Ireflected
is accelerated by Tm over a distance of θbl, after which the
elastic element is displaced and all energy supplied is stored
in the elastic element. Assuming linear elasticity, the torque
exerted by the elastic element is given by:

Te = ∆θe · k (1)

The energy supplied to the system is the displacement times
the motor torque. By assuming that the limb inertia is
substantially larger than the reflected inertia of the motor
this displacement in the elastic element can be calculated.
The torque exerted by the elastic element is at its maximum
when all the energy supplied is stored in the elastic element.

Tm · (∆θe + θbl) =
1

2
·∆θ2e · k (2)

By solving Eq. 2 for ∆θ and applying Eq. 1 the maximum
torque can be expressed;

Temax = Tm +
√
T 2
m + 2 · Tm · θbl · k (3)

Maximum stress: According to [6] the maximum stress in
the tooth base of a spur gear is a function of the torque on
this gear and a number of parameters which are based on the
mechanics of the gearbox. The last gear of the gearbox is
directly coupled to the elastic element therefore the last gear



Fig. 2: A model of the backlash re-engagement assuming no
friction. In this figure the rotations are represented as linear dis-
placements. ∆θe is the angular displacement in the elastic element,
θbl is the backlash that is experienced, Tm is the torque at which
the gears re-engage and Ireflected is the reflected inertia of the
motor.

of the gearbox is subjected to Temax . The maximum stress
in its tooth base is given by:

σmax =
2 · Temax

dw · b ·mn
· YFa · YSa · Yε · Yβ (4)

Here the Y -parameters are correction factors to compensate
for unmodelled effects and dw represents the pitch circle , b
the face width and mn the module of the gear [6].

Number of cycles: In order to calculate the number of
times this maximum stress can be experienced by the mate-
rial, the stress cycle needs to be converted into an equivalent
completely reversed cycle. This is a cycle which has its
average stress at zero and has an equivalent number of times
it can be withstood. According to [7] applying the Smith,
Watson and Topper relationship creates accurate results. An
equivalent completely reversed cycle can be calculated by
using this relationship, assuming that the cycle has a stress
amplitude, σa, of half the maximum stress:

σar =
√
σa · σmax =

√
σmax

2
· σmax =

1√
2
· σmax (5)

The relationship between a completely reversed cycle and
the number of times it can be withstood before failure is
approximated in [7] by:

Nf =
1

2
·

(
σar
σ′f

) 1
d

(6)

Here σ′f and d are fitting parameters from [7].
Predicted failure: The last step of the procedure is the

failure prediction. Failure of the gear can be predicted by
summing the inverse of Nf for each backlash re-engagement,
assuming that each of the 45 teeth of the gear are equally
fatigued and looking at when this reaches the value of one.

J =

p∑
i=1

1

45 ·Nfi
(7)

Averaging the prediction of failure of multiple trials results in
the predicted MTBF. This predicted MTBF ignores material
fatigue due to taking steps and falling. The parameters used
for this summation are given in table I.

An action set with only the maximum and minimum
action (which is often used) would be the worst-case scenario
and produces the smallest MTBF. The MTBF increases and
converges as the number of actions increase. Given a certain

TABLE I: The parameters used in Eqs. 3, 4, 5, 6 and 7. In the first
column are fitting parameters from [7] and model parameters. In
the last two columns are parameters based on the mechanics of the
gearbox [6].

θbl 0.01 [rad] b 4 [mm] YFa 2.15
k 106 [Nm · rad−1] mn 0.4 [mm] YSa 2
d -0.262 dw 18.5 [mm] Yε 1.22
σ′f 4402 [MPa] Yβ 1

action set, there are two ways the algorithm can influence
the MTBF. It can influence p, the number of backlash re-
engagements and it can influence Tm, the torque at which it
re-engages (see Eq. 3). We will investigate five algorithms
that either influence p, Tm or both. In order to focus on the
early learning phase, the MTBF is based on the first 1200
actions generated by the algorithm.

V. ALGORITHMS
The MTBF and learning performance of six different

algorithms are studied. They are presented below.
SARSA : The SARSA algorithm is used as a benchmark

for the other algorithms. Tile coding is applied in order to
speed up learning. Tile coding can increase the learning
speed of the process because it helps to generalize state-
action values [8]. The SARSA algorithm uses ε-greedy
exploration to explore state-actions. The other algorithms are
variations of this algorithm and they also use tile coding, ε-
greedy exploration and the same learning parameters.

Low-pass filter: The torques generated by the SARSA
algorithm can be low-pass filtered before being applied to
the robot [4]. This low-pass filter can be implemented with
a discrete first order filter, given by:

afilteredk = α · ak + (1− α) · afilteredk−1
(8)

This filter transforms a discrete action signal, a, into a
continuous action signal, afiltered. A first order filter is used
to keep the dynamics of the filter as simple as possible. If
α approaches zero, the predicted MTBF approaches infinity.
This low-pass filter algorithm with an α less than one will
lose its Markov property because the previous filtered action,
afilteredk−1

, is not in the state.
Markov low-pass filter: The third algorithm adds this pre-

vious action to the state thus preserving the Markov property
at the cost of increasing the number of state dimensions.

Integrating controller: Integrating a signal via a discrete
integrator can result in a signal with less high frequencies.
In [9] the controller is integrated to accurately regulate a
system without having a large number of actions. We will
use an integrating controller that closely resembles a delta
demodulator to attenuate high frequencies [10]. The SARSA
algorithm learns to increase, decrease or maintain the current
torque instead of letting it decide which torque to apply.
The integrated signal has a fixed value, ∆, at which it can
change. This value is made dimensionless by defining its size
relative to the size of the action space of the corresponding
action. When this ∆ approaches zero the predicted MTBF
approaches infinity. The system will lose its Markov Property
because the integrated action is not in the state.



Markov integrating controller: The fifth algorithm adds
the integrated action to the state, thus preserving the Markov
property at the cost of increasing the number of state
dimensions.

PADA: So far each algorithm that increases the MTBF
either loses the Markov property or increases the number
of state dimensions. The Markov property can be preserved
without adding a state dimension by implementing the inte-
grating controller differently. SARSA uses state-action values
to learn an optimal policy. An important observation is that
while working with state-action values, action selection can
be a function of the previous action. The previous action
dependent actions algorithm, or PADA algorithm, uses this
fact. When the next action is a function of the current action
the Bellman optimality equation becomes:

Q∗(s, a) =
∑
s′

P ass′

[
Rass′ + γ max

a′∈f(a)
Q∗(s′, a′)

]
With f(a) a function that limits the applicable actions. This
will change the value of the optimal state-action but it is
still computable. The dependency of the next action to the
current action is equivalent to the current action depending
on the previous action:

a′ ∈ f(a)⇒ at+1 ∈ f(at)⇒ at ∈ f(at−1)

The integrating controller can be implemented by only
evaluating the actions that are on a fixed distance from the
previous action and evaluating the previous action itself:

f(at−1) = {a| a− at−1 ∈ {±∆, 0}} (9)

From these three state-action values the highest is selected.
While learning motions, the state-action values learned while
using this PADA algorithm are approximately equal to the
state-action values learned by a SARSA algorithm. Switching
between the PADA algorithm and the SARSA can be done by
starting to evaluate every action instead of three (f(a) = A).

VI. LEARNING PERFORMANCE

Increasing the MTBF causes the learning performance to
change. The actual MTBF is roughly estimated by Eq. 7
therefore it is difficult to optimise between increasing it and
decreasing learning performance. The objective is therefore
defined as the 95% confidence that the average performance
is less than 33% decreased, while still increasing the MTBF.

The learning performance of the algorithms is character-
ized by two averages. These are the average end performance
and rise time. An example of these are given in Fig. 6.

End performance: The performance during the learning
process is computed by summing up all rewards given during
a test run. In this run all actions are based on the greedy
policy. The end performance is calculated by looking at the
average performance of the last 10% test runs of a trial.

Rise time: The rise time is computed by using the relative
performance difference between the first test run and the end
performance. It is computed by looking at the time taken to
rise to 95% of its relative end performance. Averaging the
rise times of the trials gives the average rise time.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
10

3

10
4

10
5

Alpha 

 

 
0.1 0.2 0.3 0.4 0.5 0.6

10
3

10
4

10
5

Delta 

M
T

B
F

 [
s
]

Low−pass filter

Markov low−pass filter

Integrating controller

Markov Integrating controller

PADA

Fig. 3: The MTBF can be increased by decreasing the ∆ or α
parameter. The horizontal dashed lines represent the confidence
interval of the average MTBF of the SARSA(λ) algorithm.

VII. INVERTED PENDULUM SIMULATION

We start to make an initial selection of promising algo-
rithms by comparing the different algorithms on a simulated
inverted pendulum. The pendulum consists of a point mass,
of 2 [kg], which is located 0.2 [m] from the joint, its moment
of inertia is 0,048 [kg · m2]. The torque on the pendulum
is between ±1.5 [Nm] and assumed to be generated by the
same hardware as in LEO. The state of this system is sampled
at 20 [Hz] and it consists of the angle, θ, with respect to its
unstable equilibrium and the velocity, θ̇, of the pendulum.
Its reward function is −5θ2− 0.1θ̇2−a2, with a the applied
torque on the pendulum. Each of the algorithms will learn
three actions. Their averages are computed over 29 trials.

SARSA(λ): The SARSA(λ) algorithm learns to put ±1.5
or 0 [Nm] torque on the joint to get θ to zero (almost worst-
case). The algorithm has a learning rate (α) of 0.2, a discount
rate (γ) of 0.99, an exploration rate (ε) of 0.05, and a trace
decay rate (λ) of 0.92. These parameters have not been tuned
for any specific system and will be used by all six algorithms.
The average end performance of the SARSA(λ) algorithm
is -851. This average has a 95% confidence interval of 39.
33% of -851 is approximately -281 therefore the average
end performance of other algorithms should be above -851-
281+39=-1093 with a confidence of 95%. The average rise
time is 681 [s]. This average has a confidence interval of 67
[s], therefore the average rise time of the other algorithms
should be below 839 [s]. The MTBF of this algorithm is
1596 [s] with a confidence interval of 34 [s].

Other algorithms: In Fig. 3 the MTBF of the other
algorithms are displayed as a function of either the α or ∆
respectively. All algorithms are able to significantly increase
the MTBF and have small confidence intervals. In Fig. 4 the
end performance of the algorithms as a function of the MTBF



10
3

10
4

10
5

−2000

−1800

−1600

−1400

−1200

−1000

−800

−600

MTBF [s]

E
n
d
 p

e
rf

o
rm

a
n
c
e
 

 

 

Low−pass filter

Markov low−pass filter

Integrating controller

Markov Integrating controller

PADA

Fig. 4: Increasing the MTBF generally has a decreasing effect on
the end performance. The end performance of the algorithm should
be above the horizontal dashed line with a 95% certainty. The
integrating controller algorithm is unable to achieve an equivalent
end performance. The vertical dashed line is the MTBF of the
SARSA(λ) algorithm.

is visualized. Only the plain integrating controller algorithm
is unable to achieve equivalent end performance. As shown
in Fig. 5, the rise time generally increases when the MTBF is
increased. Both algorithms that increased the number of state
dimensions are unable to achieve equivalent rise times. This
leaves two algorithms which are able to reach the objective.
The low-pass filter algorithm with an α of 0.834 or larger and
the PADA algorithm with a ∆ of 0.5. Both these algorithms
are able to increase the MTBF by a factor of two. The PADA
algorithm with this delta increases the MTBF by reducing
the number of backlash re-engagements during exploration
while the low-pass filter decreases the torque at which it
re-engages.

INVERTED PENDULUM EXPERIMENT
The PADA algorithm with a ∆ of 0.5, the low-pass filter

algorithm with an α of 0.834 and a SARSA(λ) algorithm
are applied to a physical inverted pendulum. All algorithms
use the same learning parameters. The action supplied to this
pendulum is a motor voltage between ±3 [V ]. The pendulum
is sampled at 33 [Hz] and its physical properties are given
in [11]. Assuming a linear relationship between voltage and
torque, and that it is generated by the same hardware as
in LEO, the MTBF can be calculated. The averages are
computed over 28 trials.

MTBF: The SARSA(λ) algorithm has a MTBF of 6.92 ·
107 [s], the low-pass filter algorithm a MTBF of 1.31 · 108

[s] and the PADA algorithm a MTBF of 1.39 · 108 [s]. The
PADA algorithm and the low-pass filter algorithm are both
able to increase the MTBF by a factor of two.

Learning performance: In Fig. 6 the average performance
as a function of time is visualized. All algorithms have

10
3

10
4

10
5

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

MTBF [s]

R
is

e
 t
im

e
 [
s
]

 

 

Low−pass filter

Markov low−pass filter

Integrating controller

Markov Integrating controller

PADA

Fig. 5: Increasing the MTBF generally has a increasing effect on
the rise time. The rise time of the algorithm should be below the
horizontal dashed line with a 95% certainty. Both the algorithms
that increase the number of state dimensions to preserve the Markov
property are unable to achieve equivalent rise times. The vertical
dashed line is the MTBF of the SARSA(λ) algorithm.

Time [s]

P
er

fo
rm

an
ce

0 100 200 300 400

-4000

-3000

-2000

-1000

SARSA(λ)

PADA,Δ=0.5

Low-pass filter,α=0.834

Fig. 6: Average learning curves and confidence interval of the
physical inverted pendulum. The horizontal line indicates the end
performance, and the vertical line indicates the rise time, of the
SARSA(λ) algorithm.

equivalent end performance. From this figure it is clear that
the PADA algorithm learns significantly faster than the other
two. This indicates that there are cases in which the PADA
algorithm does not have to sacrifice performance in order to
increase the MTBF.

VIII. LEO SIMULATION

The learning process on LEO can be simulated to assess
the properties of both algorithms on complex tasks relative
to SARSA(λ). The model used to simulate LEO is visualized
in Fig. 1c and uses the ODE engine. The simulated LEO is
rewarded for forward motion and is sampled at 30 [Hz]. It
has 10 state dimensions and is highly non-linear. The algo-
rithm properties are computed by averaging over 15 trials.
The SARSA(λ) algorithm learns to pick the optimal voltage,



Time [s]

P
er

fo
rm

an
ce

0 7333 14667
-500

0

500

1000

1500

2000

2500
SARSA(λ)

PADA,Δ=0.17

Low-pass filter,α=0.36

Fig. 7: Average learning curve of the simulated learning process of
LEO. The SARSA(λ) learning curve is displayed as a reference.
The other two methods have a MTBF of 39,000 [s].

out of the set {−1, −2/3, −1/3, 0, 1/3, 2/3, 1}·10.7 [V ],
to get the optimal walking gait. It learns this for both the two
hips and the swing leg knee joint therefore the number of
action dimensions is three.

The predicted MTBF of an algorithm is assumed to be
large in the exploration phase relative to the optimization
phase. In order to apply small values of ∆ or α without a
significant drop in performance they could be used during the
exploration phase only. After the exploration phase (7,333
[s] in LEO’s case) the algorithms can be switched back
to SARSA(λ). In most trials the robot has already found
a sub-optimal walking gait at this point. The SARSA(λ)
algorithm optimizes this gait for another 7,333 [s]. Cutting up
the learning process changes the apparent system dynamics
(which may require some relearning) but it has the previously
described advantage. In nature many learning processes are
also made out of parts. For instance, rat foetuses already start
to learn motions while they are still in their mothers womb
[12].

SARSA(λ): The SARSA(λ) algorithm has an average end
performance of 1760 and a confidence interval of 262. The
average end performance of the other algorithms should be
above 1441. The algorithm has a MTBF of 362 [s].

Other algorithms: As can be seen in Fig. 8, the MTBF
can be increased further when both algorithms are switched
back after 7,333 [s]. In Fig. 7 the learning curves of a
PADA and a low-pass filter which both have the same
MTBF are displayed. These two algorithms both increase
the MTBF by a factor of 108 to approximately 39,000 [s].
Also the SARSA(λ) algorithm is displayed as a reference.
While the PADA algorithm is able to learn with small
values of ∆ and switch back to SARSA(λ) without losing
performance, the low-pass filter is not. Smaller values of ∆
might also be possible when applying the PADA algorithm.
The PADA algorithm is clearly better at keeping the learning
performance equivalent while increasing the MTBF.

IX. CONCLUSIONS

The PADA and low-pass algorithm are both able to
increase the MTBF considerably while keeping the learning
performance equivalent to that of SARSA(λ). The PADA

10
3

10
4

10
5

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

MTBF [s]

E
n
d
 p

e
rf

o
rm

a
n
c
e
 

 

 

PADA

PADA switched

Low−pass filter

Low−pass filter switched

Fig. 8: Increasing the MTBF generally has a decreasing effect on
the end performance. This effect can be mitigated by switching
back to SARSA(λ) after the exploration phase.

algorithm does not violate the Markov property during
learning. The low-pass filter algorithm does, which is a
disadvantage. The PADA algorithm has more potential to
increase the MTBF than the low-pass filter when applied to
more complex systems. The PADA algorithm can increase
the MTBF by a factor of 108 in case of LEO. In some cases
it can even out-perform the SARSA(λ) algorithm.

REFERENCES

[1] E. Schuitema, M. Wisse, T. Ramakers, and P. Jonker, “The design of
LEO: a 2D bipedal walking robot for online autonomous reinforcement
learning,” in Proc. IROS, 2010, pp. 3238 – 3243.

[2] E. Schuitema, “Reinforcement learning on autonomous humanoid
robots,” Ph.D. dissertation, Delft University of Technology, 2012.

[3] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in Proc. ICRA, 2004, pp. 2619–2624.

[4] H. Benbrahim and J. A. Franklin, “Biped dynamic walking using
reinforcement learning,” Robotics and Autonomous Systems, vol. 22,
pp. 283–302, 1997.

[5] N. E. Dowling, “Fatigue failure predictions for complicated stress-
strain histories,” Illinois Univ. at Urbana, Tech. Rep. AD0736583,
1971.

[6] D. Muhs, H. Wittel, M. Becker, D. Jannasch, and J. Voiek,
Roloff/Matek Machine-onderdelen, R. Heyer, Ed. Academic Service,
2005.

[7] N. E. Dowling, “Mean stress effects in stress-life and strain-life
fatigue,” in Proc. SEA fatigue congress, 2004.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[9] R. Hafner and M. Riedmiller, “Neural reinforcement learning con-
trollers for a real robot application,” in Proc. ICRA, 2007, pp. 2098–
2103.

[10] R. Steele, “Srn formula for linear delta modulation with ban-limited
flat and rc-shaped gaussian signals,” Transactions on Communication,
vol. 28, pp. 1977–1984, 1980.

[11] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, and
E. Schuitema, “Efficient model learning methods for actor-critic con-
trol,” Transactions on Systems, Man and Cybernetics, part B, vol. 42,
pp. 591–602, 2012.

[12] G. A. Kleven, M. S. Lane, and S. R. Robinson, “Development of inter-
limb movement synchrony in the rat fetus.” Behavioral neuroscience,
vol. 118, no. 4, p. 835, 2004.


