Learning while preventing mechanical failure due to random motions

Hendrik Meijdam, Michiel Plooij, <u>Wouter Caarls</u> TU Delft Robotics Institute

Reinforcement learning for robots

- Robot LEO
 - ▶ 50cm tall, 1.7kg
 - 7 Dynamixel servos
 - Connected to a boom (2d)
- Learning to walk
 - SARSA(λ)
 - Start by observing known controller
 - Optimize over 4 hours.
- Gearboxes break every 30 minutes!

Reinforcement learning for robots

- Robot LEO
 - 50cm tall, 1.7kg
 - 7 Dynamixel servos
 - Connected to a boom (2d)
- Learning to walk
 - SARSA(λ)
 - Start by observing known controller
 - Optimize over 4 hours.

• Gearboxes break every 30 minutes!

Reinforcement learning for robots

- Robot LEO
 - 50cm tall, 1.7kg
 - 7 Dynamixel servos
 - Connected to a boom (2d)
- Learning to walk
 - SARSA(λ)
 - Start by observing known controller
 - Optimize over 4 hours.
- Gearboxes break every 30 minutes!

Falling

- Foam padding
- Switch off power to motors
- Stepping
 - Unavoidable
 - Elastic joint elements
- Random motions
 - Caused by exploration
 - Elastic elements help, but not enough
 - Less problematic in policy search

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

Falling

- Foam padding
- Switch off power to motors
- Stepping
 - Unavoidable
 - Elastic joint elements
- Random motions
 - Caused by exploration
 - Elastic elements help, but not enough
 - Less problematic in policy search

Falling

- Foam padding
- Switch off power to motors
- Stepping
 - Unavoidable
 - Elastic joint elements
- Random motions
 - Caused by exploration
 - Elastic elements help, but not enough
 - Less problematic in policy search

▶ ◀ ᆿ ▶ ◀ ᆿ ▶

Falling

- Foam padding
- Switch off power to motors
- Stepping
 - Unavoidable
 - Elastic joint elements
- Random motions
 - Caused by exploration
 - Elastic elements help, but not enough
 - Less problematic in policy search

Preventing failure due to random motions

Model the damage due to backlash re-engagement

- Investigate different action filtering algorithms
- Compare the performance on a simulation of LEO

Preventing failure due to random motions

- Model the damage due to backlash re-engagement
- Investigate different action filtering algorithms
- Compare the performance on a simulation of LEO

Preventing failure due to random motions

- Model the damage due to backlash re-engagement
- Investigate different action filtering algorithms
- Compare the performance on a simulation of LEO

Calculating the MTBF

- The mean time between failure (MTBF) is predicted based on material fatigue during backlash re-engagements
- The maximum stress in the gears is a function of the torque at which the gears re-engage
- MTBF is a function of torque and number of re-engagements

Calculating the MTBF

- The mean time between failure (MTBF) is predicted based on material fatigue during backlash re-engagements
- The maximum stress in the gears is a function of the torque at which the gears re-engage
- MTBF is a function of torque and number of re-engagements

▶ ◀ ᆿ ▶ ◀ ᆿ ▶

Low-pass filtering

• Filter the actions with a discrete first-order filter

$$a_{\textit{filtered}_t} = \alpha \cdot a_t + (1 - \alpha) \cdot a_{\textit{filtered}_{t-1}}$$

 The Markov property can be preserved by adding a_{filteredk-1} to the state

TUDelft

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ ▲ 톨|= ♡QC

Low-pass filtering

• Filter the actions with a discrete first-order filter

$$a_{\textit{filtered}_t} = \alpha \cdot a_t + (1 - \alpha) \cdot a_{\textit{filtered}_{t-1}}$$

• The Markov property can be preserved by adding *a*_{filteredk-1} to the state

Learning while preventing mechanical failure due to random motions

TUDelft

Integrating controller

Use relative actions instead of absolute actions

 $a_{filtered_t} = a_{filtered_t} + a_t, a_t \in \{-\Delta, 0, +\Delta\}$

 The Markov property can be preserved by adding a_{t-1} to the state

< □ ▶

TUDelft

Learning while preventing mechanical failure due to random motions

Integrating controller

• Use relative actions instead of absolute actions

 $a_{\textit{filtered}_t} = a_{\textit{filtered}_t} + a_t, a_t \in \{-\Delta, 0, +\Delta\}$

 The Markov property can be preserved by adding a_{t-1} to the state

Learning while preventing mechanical failure due to random motions

TUDelft

Previous action dependent actions

• Use absolute actions, but only allow those near the previous action

$$a_t \in \{a_{t-1} - \Delta, a_{t-1}, a_{t-1} + \Delta\}$$

 Does not violate the Markov property when using a state-action value function

$$Q(s,a) = \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma \max_{a'} Q(s',a') \right]$$

◆□ ▶ < 률 ▶ < 률 ▶ < ■ ▶ < □ ▶</p>

Previous action dependent actions

Use absolute actions, but only allow those near the previous action

$$a_t \in \{a_{t-1} - \Delta, a_{t-1}, a_{t-1} + \Delta\}$$

 Does not violate the Markov property when using a state-action value function

$$Q(s,a) = \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma \max_{a'} Q(s',a') \right]$$

Previous action dependent actions

Use absolute actions, but only allow those near the previous action

$$a_t \in \{a_{t-1} - \Delta, a_{t-1}, a_{t-1} + \Delta\}$$

 Does not violate the Markov property when using a state-action value function

$$Q(s, a) = \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma \max_{a' \in f(a)} Q(s', a') \right]$$

Predicted MTBF

Increased filtering increases MTBF

Learning while preventing mechanical failure due to random motions

TUDelft

End performance on pendulum swing-up

Integrating controller can't reach original end performance

< □ >

Learning while preventing mechanical failure due to random motions

TUDelft

End performance on pendulum swing-up

TUDelft

▲□▶▲@▶▲콜▶▲콜▶ 콜⊨ 쒼९०

Time constant on pendulum swing-up

Algorithms with extra state can't reach original time constant

Learning while preventing mechanical failure due to random motions

TUDelft

▶ ∢ ⊒ ▶

Time constant on pendulum swing-up

TUDelft

▲□▶▲圖▶▲콜▶▲콜▶ 필]= 쒼९०

Time constant on pendulum swing-up

TUDelft

▲□▶▲圖▶▲콜▶▲콜▶ 필]티 ')요?

Physical pendulum

Low-pass filter and PADA are at least as good as SARSA(λ) while increasing the predicted MTBF by a factor 2

< □ ▶

· • @ • • Ξ • • Ξ •

LEO simulation

 PADA is just as good as SARSA(λ) while increasing the predicted MTBF by a factor 108

< □ ▶

Low-pass filter is slightly worse at the same factor

TUDelft

• Reinforcement learning on robots is hampered by damage

- The damage due to random motions of TD control algorithms can be successfully mitigated by action filtering
- The low-pass filter and the PADA algorithm both increase the predicted MTBF without negatively affecting the learning process
- The PADA algorithm does not violate the Markov property and gives slightly better results

- Reinforcement learning on robots is hampered by damage
- The damage due to random motions of TD control algorithms can be successfully mitigated by action filtering
- The low-pass filter and the PADA algorithm both increase the predicted MTBF without negatively affecting the learning process
- The PADA algorithm does not violate the Markov property and gives slightly better results

- Reinforcement learning on robots is hampered by damage
- The damage due to random motions of TD control algorithms can be successfully mitigated by action filtering
- The low-pass filter and the PADA algorithm both increase the predicted MTBF without negatively affecting the learning process
- The PADA algorithm does not violate the Markov property and gives slightly better results

- Reinforcement learning on robots is hampered by damage
- The damage due to random motions of TD control algorithms can be successfully mitigated by action filtering
- The low-pass filter and the PADA algorithm both increase the predicted MTBF without negatively affecting the learning process
- The PADA algorithm does not violate the Markov property and gives slightly better results

Questions?

▲□▶ < @▶ < 둘▶ < 둘▶ 줄|둘 < 의

Gears

Unrestricted random motions

Restricted random motions

Performance measurement

- End performance is averaged over last 10% of test trials
- Time constant is time taken to rise to 95% of the relative end performance

