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Reinforcement learning for robots

Robot LEO
I 50cm tall, 1.7kg
I 7 Dynamixel servos
I Connected to a boom (2d)

Learning to walk
I SARSA(λ)
I Start by observing known

controller
I Optimize over 4 hours.

Gearboxes break every 30 minutes!
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Failure causes

Falling
I Foam padding
I Switch off power to motors

Stepping
I Unavoidable
I Elastic joint elements

Random motions
I Caused by exploration
I Elastic elements help, but not

enough
I Less problematic in policy search
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Preventing failure due to random
motions

Model the damage due to backlash re-engagement

Investigate different action filtering algorithms

Compare the performance on a simulation of LEO
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Calculating the MTBF

The mean time between failure (MTBF) is predicted based
on material fatigue during backlash re-engagements

The maximum stress in the gears is a function of the
torque at which the gears re-engage

MTBF is a function of torque and number of
re-engagements
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Low-pass filtering

Filter the actions with a discrete first-order filter

afilteredt = α · at + (1− α) · afilteredt−1
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The Markov property can be preserved by adding afilteredk−1

to the state

()Learning while preventing mechanical failure due to random motions 6 / 15



Low-pass filtering

Filter the actions with a discrete first-order filter

afilteredt = α · at + (1− α) · afilteredt−1

0 2 4 6 8 10 12

−100

−80

−60

−40

−20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 m

ax
im

um
 to

rq
ue

 

Steps

 

 

Action
α=0.5
α=0.25

The Markov property can be preserved by adding afilteredk−1

to the state

()Learning while preventing mechanical failure due to random motions 6 / 15



Integrating controller

Use relative actions instead of absolute actions

afilteredt = afilteredt + at , at ∈ {−∆, 0,+∆}
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Previous action dependent actions

Use absolute actions, but only allow those near the
previous action

at ∈ {at−1 −∆, at−1, at−1 + ∆}

Does not violate the Markov property when using a
state-action value function

Q(s, a) =
∑

s′

Pa
ss′

[
Ra

ss′ + γmax
a′

Q(s ′, a′)

]
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Predicted MTBF
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Increased filtering increases MTBF
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End performance on pendulum
swing-up
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Integrating controller can’t reach original end performance
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Time constant on pendulum swing-up
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Algorithms with extra state can’t reach original time constant
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Time constant on pendulum swing-up
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Time constant on pendulum swing-up
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Physical pendulum
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Low-pass filter and PADA are at least as good as SARSA(λ)
while increasing the predicted MTBF by a factor 2
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LEO simulation
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PADA is just as good as SARSA(λ) while increasing the
predicted MTBF by a factor 108

Low-pass filter is slightly worse at the same factor
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Summary

Reinforcement learning on robots is hampered by damage

The damage due to random motions of TD control
algorithms can be successfully mitigated by action filtering

The low-pass filter and the PADA algorithm both increase
the predicted MTBF without negatively affecting the
learning process

The PADA algorithm does not violate the Markov property
and gives slightly better results
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Questions?
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Gears

Unrestricted random motions

Restricted random motions

()Learning while preventing mechanical failure due to random motions 1 / 2



Performance measurement
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End performance is averaged over last 10% of test trials

Time constant is time taken to rise to 95% of the relative
end performance
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