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Reinforcement learning for robots

@ Robot LEO

» 50cm tall, 1.7kg
> 7 Dynamixel servos
» Connected to a boom (2d)
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Reinforcement learning for robots

@ Robot LEO
» 50cm tall, 1.7kg
> 7 Dynamixel servos
» Connected to a boom (2d)
@ Learning to walk Yo i
repfogrammed
> SARSA(A) 0 05 1 15 2 25 3 35 4 as
Learning time [h]
» Start by observing known
controller
» Optimize over 4 hours.

Walked distance per episode [m]
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Reinforcement learning for robots

@ Robot LEO
» 50cm tall, 1.7kg
> 7 Dynamixel servos
» Connected to a boom (2d)
@ Learning to walk Yo i
repfogrammed
> SARSA(A) 0 05 1 15 2 25 3 35 4 as
Learning time [h]
» Start by observing known
controller
» Optimize over 4 hours.

Walked distance per episode [m]

@ Gearboxes break every 30 minutes!
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Failure causes

o Falling

» Foam padding
» Switch off power to motors
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Failure causes

o Falling

» Foam padding

» Switch off power to motors
o Stepping

» Unavoidable

» Elastic joint elements
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Failure causes

o Falling
» Foam padding
» Switch off power to motors
o Stepping
» Unavoidable
» Elastic joint elements
@ Random motions
» Caused by exploration
» Elastic elements help, but not
enough
> Less problematic in policy search
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Failure causes

o Falling

» Foam padding

» Switch off power to motors
o Stepping

» Unavoidable

» Elastic joint elements
@ Random motions

» Caused by exploration
» Elastic elements help, but not
enough
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Preventing failure due to random
motions

@ Model the damage due to backlash re-engagement
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Preventing failure due to random
motions

@ Model the damage due to backlash re-engagement

@ Investigate different action filtering algorithms
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Preventing failure due to random
motions

@ Model the damage due to backlash re-engagement
@ Investigate different action filtering algorithms

@ Compare the performance on a simulation of LEO
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Calculating the MTBF

o a1

96 = 960 + A e;:

@ The mean time between failure (MTBF) is predicted based
on material fatigue during backlash re-engagements

@ The maximum stress in the gears is a function of the
torque at which the gears re-engage
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Calculating the MTBF

o a1

96 = 960 + A e;:

@ The mean time between failure (MTBF) is predicted based
on material fatigue during backlash re-engagements

@ The maximum stress in the gears is a function of the
torque at which the gears re-engage

@ MTBF is a function of torque and number of
re-engagements
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Low-pass filtering

o Filter the actions with a discrete first-order filter

afiltered, = - ar + (1 — @) - afittered, ,

Percentage of maximum torque
o
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Low-pass filtering

o Filter the actions with a discrete first-order filter

afiltered, = - ar + (1 — @) - afittered, ,

Percentage of maximum torque
o

=== Action
== 0a=0.5
0a=0.25

0 2 4 6 8 10 12

@ The Markov property can be preserved by adding afitered,
to the state
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Integrating controller

@ Use relative actions instead of absolute actions

3filtered; = filtered; + at, ar € {—A, 0, +A}

100 - Increase
80
60

Maintain

Percentage of maximum torque
o

= = = Action
1 == n=0.25
1| —— A=0.125
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Integrating controller

@ Use relative actions instead of absolute actions

3filtered; = filtered; + at, ar € {—A, 0, +A}

100 - Increase
80
60

Maintain

Percentage of maximum torque
o

[N S

Decrease
6 8 10 12

Steps

@ The Markov property can be preserved by adding a;_; to
the state
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Previous action dependent actions

@ Use absolute actions, but only allow those near the
previous action

ar€{at—1 — A,ar_1,ac-1 + A}
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Previous action dependent actions

@ Use absolute actions, but only allow those near the
previous action

ar€{at—1 — A,ar_1,ac-1 + A}

@ Does not violate the Markov property when using a
state-action value function

Q(s,a) = Z 2, [st/ +ymax Q(s', a)
s’ ?
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Previous action dependent actions

@ Use absolute actions, but only allow those near the
previous action

ar€{at—1 — A,ar_1,ac-1 + A}

@ Does not violate the Markov property when using a
state-action value function

Q(s,a) = Z SS,{ 2+ max Q(s',a)

a'ef(a)
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Predicted MTBF

Delta
0.1 0.2 0.3 0.4 0.5 0.6

~—#— Low-pass filter
—<1— Markov low-pass filter
— A - Integrating controller
10°} 3 ~—&-— Markov Integrating controller
- ‘© - PADA

MTBF [s]

3
TUDelft

hanical failure due to random motions

arning while preventi



End performance on pendulum
swing-up
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Integrating controller can't reach original end performance
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End performance on pendulum
swing-up
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Time constant on pendulum swing-up

1100 T
! #— Low-pass filter
! <+ Markov low—-pass filter
1000+ ! —~m— Markov integrating controller
: —6— PADA
|
|

Time constant [s]

MTBF [s]

Algorithms with extra state can’t reach original time constant
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Time constant on pendulum swing-up
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3
TUDelft

| failure due to random mo



Time constant on pendulum swing-up
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Low-pass filter
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Physical pendulum
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= = = Low-pass filter, a=0.834
0 100 200 300 400

Time [s]

Low-pass filter and PADA are at least as good as SARSA(\)
while increasing the predicted MTBF by a factor 2
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LEO simulation
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@ PADA is just as good as SARSA(\) while increasing the
predicted MTBF by a factor 108

@ Low-pass filter is slightly worse at the same factor
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Summary

@ Reinforcement learning on robots is hampered by damage
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Summary

@ Reinforcement learning on robots is hampered by damage

@ The damage due to random motions of TD control
algorithms can be successfully mitigated by action filtering
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Summary

@ Reinforcement learning on robots is hampered by damage
@ The damage due to random motions of TD control
algorithms can be successfully mitigated by action filtering

@ The low-pass filter and the PADA algorithm both increase
the predicted MTBF without negatively affecting the
learning process
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Summary

@ Reinforcement learning on robots is hampered by damage
@ The damage due to random motions of TD control
algorithms can be successfully mitigated by action filtering

@ The low-pass filter and the PADA algorithm both increase
the predicted MTBF without negatively affecting the
learning process

@ The PADA algorithm does not violate the Markov property
and gives slightly better results
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Questions?
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Gears

Unrestricted random motions

Restricted random motions
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Performance measurement
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Performance
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Steps 4
e End performance is averaged over last 10% of test trials

@ Time constant is time taken to rise to 95% of the relative
end performance

3
TUDelft

rning while prevent hanical failure due to random motions



	Introduction
	MTBF
	Filtering algorithms
	Comparison
	Experiments
	Conclusion
	Appendix

