Reinforcement learning tutorial

Wouter Caarls

Koroibot Summer School, September 25th, 2014
What is reinforcement learning?

[R. Nagel, 2008]
What is reinforcement learning?

Supervised learning
Given samples of $x \rightarrow y$, find $y = f(x)$
(regression)

Reinforcement learning
Given samples of $(x, y) \rightarrow z$, find $y = f(x)$ that maximizes z.

Unsupervised learning
Given a dataset x, find interesting patterns
(clusters, relations, etc.)
What is reinforcement learning?

Supervised learning

Given samples of $x \rightarrow y$, find $y = f(x)$ (regression)

Reinforcement learning

Given samples of $(x, y) \rightarrow z$, find $y = f(x)$ that maximizes z.

Unsupervised learning

Given a dataset x, find interesting patterns (clusters, relations, etc.)
Learning by trial and error

Goal
Find actions that maximize the reward received over the lifetime of the agent.
Why reinforcement learning?

- Specify the problem, not the solution
 - Easier: desired outcome is usually known
 - Still tricky: reward engineering
- Can deal with delayed rewards
 - Optimizes over all future rewards
- Model-free
 - No mapping, system identification, etc. beforehand
 - Works in any (static) environment
Why reinforcement learning?

- Specify the problem, not the solution
 - Easier: desired outcome is usually known
 - Still tricky: reward engineering
- Can deal with delayed rewards
 - Optimizes over all future rewards
- Model-free
 - No mapping, system identification, etc. beforehand
 - Works in any (static) environment
Why reinforcement learning?

- Specify the problem, not the solution
 - Easier: desired outcome is usually known
 - Still tricky: reward engineering
- Can deal with delayed rewards
 - Optimizes over all future rewards
- Model-free
 - No mapping, system identification, etc. beforehand
 - Works in any (static) environment
Context of learning control

Search
- Interactive (cumulative regret)
 - Model (simple regret)
 - System ident.
 - Cost per step
 - Single cost
 - Reinforcement learning
 - Values
 - Both
 - Policies
 - Actor-critic
 - Critic
 - Actor
 - TD learning
 - Policy search
 - Dynamic Programming
 - TD learning
 - Optimal control
 - Sample-based motion planning
 - Sample-based motion planning
 - Sampled
 - Continuous
 - Symbolic
 - Discrete
 - Motion planning
 - Geometric
 - Planning
 - Black-box optimization
 - Reinforcement learning
 - Learning
 - Search
Interactive (no model)

All actions are **sequentially** executed in the **real world**.

- **Sequentially**
 - Observations only occur in trajectories
 - Cannot evaluate different actions in the same state

- **Real world**
 - Actions take real time
 - Actions must be selected as fast as possible
 - Dangerous actions can damage the system
Reward is available at intermediate steps and only based on the current transition.

- Intermediate steps
 - Allows us to assign credit to particular actions
 - May be delayed
- Based on current transition
 - No integrated costs at the end of a trajectory
 - No "target arrival time" unless time can be observed
Example: LEO

Main characteristics:
- ‘2D‘ (boom keeps hip axis horizontal)
- ~50 cm
- ~1.7 kg
- 7 servo motors (Dynamixel)
- On-board computing
- Autonomous (except power)

Task:
Learn to walk

[Schuitema et al., 2010]
Example: LEO

[Schuitema, 2010]
Example: Pancake flipping

[Kormuschev et al., 2010]
Outline

1. Introduction

2. The reinforcement learning problem
 - Markov decision processes
 - Value functions

3. Solution techniques

4. Sample complexity

5. Hands-on
Markov chain

- Next state depends only on current state
- Transitions may be stochastic, but distribution must be static given the current state
Markov process

- Action also influences next state
Markov decision process

- Introduces optimization criterion: find actions that maximize reward
- Reward (cost) depends only on the state transition
States and actions

Next state depends only on current state and action

- Given current state and action, next state distribution is static
 \[p(s'|s, a) = \mathcal{T}(s, a, s') \]
- History-independent
 \[p(s_n|s_1, a_1, s_2, a_2, \ldots, s_{n-1}, a_{n-1}) = p(s_n|s_{n-1}, a_{n-1}) \]
States and actions

Next state depends only on current state and action

- Given current state and action, next state distribution is static
 \[p(s' | s, a) = \mathcal{T}(s, a, s') \]
- History-independent
 \[p(s_n | s_1, a_1, s_2, a_2, \ldots, s_{n-1}, a_{n-1}) = p(s_n | s_{n-1}, a_{n-1}) \]

\[g, m, \theta, \dot{\theta}, \ddot{\theta}, l, m_c, F, x, \dot{x}, \ddot{x} \]
States and actions

Next state depends only on current state and action

- Given current state and action, next state distribution is static
 \[p(s' | s, a) = \mathcal{T}(s, a, s') \]
- History-independent
 \[p(s_n | s_1, a_1, s_2, a_2, \ldots, s_{n-1}, a_{n-1}) = p(s_n | s_{n-1}, a_{n-1}) \]

\[g, m, \theta, \dot{\theta}, \ddot{\theta}, l, m_c, F, x, \dot{x}, \ddot{x} \]
States and actions

Next state depends only on current state and action

- Given current state and action, next state distribution is static
 \[p(s'|s, a) = \mathcal{T}(s, a, s') \]
- History-independent
 \[p(s_n|s_1, a_1, s_2, a_2, \ldots, s_{n-1}, a_{n-1}) = p(s_n|s_{n-1}, a_{n-1}) \]

\[g, m, \theta, \dot{\theta}, \ddot{\theta}, l, m_c, F, x, \dot{x}, \ddot{x} \]
States and actions

Next state depends only on current state and action

- Given current state and action, next state distribution is static
 \[p(s' \mid s, a) = \mathcal{T}(s, a, s') \]
- History-independent
 \[p(s_n \mid s_1, a_1, s_2, a_2, \ldots, s_{n-1}, a_{n-1}) = p(s_n \mid s_{n-1}, a_{n-1}) \]

\[g, m, \theta, \dot{\theta}, \ddot{\theta}, l, m_c, F, x, \dot{x}, \ddot{x} \]
Rewards

Determine the task

- Depend only on the current state transition
 \[p(r|s, a, s') = p(s, a, s') \]
- Learning goal is to maximize the expected return
 \[R_t = r_{t+1} + r_{t+2} + \cdots + r_T \]
- Should reward desirable behaviors and punish undesirable ones
- In practice, often given by designer instead of environment

Define the problem, not the solution (reward engineering).
Some tasks are naturally episodic:
- Reaching, grasping, standing up, kicking, etc.

Others are continuing:
- Holding, balancing, walking, etc.

Continuing tasks \((T = \infty)\) may have infinite returns

Introduce discounted return:

\[
R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots
\]

\[
= \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}
\]

Discount factor \(\gamma \in [0, 1]\) determines task horizon
Control policy

Specifies which action to take in each state

- Due to Markov property, only has to depend on current state
 \[\pi(a|s) = f(s) \]
- Optimal policy \(\pi^* \) maximizes expected return

\[\pi^* = \arg\max_{\pi} E_{\pi} \{ R_t \} \]

Optimal subproblems

In an acyclic MDP, the optimal policy for a state \(s \) is independent of the optimal policy for the preceding states, leading to recursive solutions.
Control policy

Specifies which action to take in each state

- Due to Markov property, only has to depend on current state
 \[\pi(a|s) = f(s) \]
- Optimal policy \(\pi^* \) maximizes expected return
 \[\pi^* = \arg \max_{\pi} E_{\pi} \{ R_t \} \]

Optimal subproblems

In an acyclic MDP, the optimal policy for a state \(s \) is independent of the optimal policy for the preceding states, leading to recursive solutions.
The control scheme in reinforcement learning involves:

- **Environment**: Provides feedback through actions, rewards, and observations.
- **Agent**: Receives actions, rewards, and observations from the environment.

The diagram illustrates the flow of information:
- Actions are sent from the agent to the environment.
- Observations are received by the agent from the environment.
- Rewards are returned from the environment to the agent.

This interaction forms the basis of reinforcement learning.
Control scheme

\[s' \sim p(s'|s, a) \]
\[r \sim p(r|s, a, s') \]
\[a \sim \pi(a|s) \]
Robot task modeled as an MDP

- States:
 \[s = [\theta, \dot{\theta}] \]

- Actions:
 \[a = \tau \]

- Transition function:
 \[s' = s + \int_0^t \text{eom}(s, a) dt + \mathcal{N}(\mu, \sigma) \]

- Rewards:
 \[r = -sQs^T - Pa^2 \]

- Policy:
 \[a = \pi(s) \]
Value functions

Learning goal: find optimal policy π^* that maximizes the expected return R_t

$$\pi^* = \arg \max_{\pi} E_{\pi} \{ R_t \}$$

Define a value function V^π that stores the expected return for each state s under a certain policy π:

$$V^\pi(s) = E_{\pi} \{ R_t \mid s_t = s \}$$

$$= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

then

$$\pi^* = \arg \max_{\pi} V^\pi$$

$$V^*(s) = V^{\pi^*}(s) = \max_{\pi} V^\pi(s)$$
Value functions

Learning goal: find optimal policy π^* that maximizes the expected return R_t

$$\pi^* = \arg \max_{\pi} E_\pi \left\{ R_t \right\}$$

Define a value function V^π that stores the expected return for each state s under a certain policy π:

$$V^\pi(s) = E_\pi \left\{ R_t \mid s_t = s \right\} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

then

$$\pi^* = \arg \max_{\pi} V^\pi$$

$$V^*(s) = V^\pi^*(s) = \max_{\pi} V^\pi(s)$$
Value functions

Learning goal: find optimal policy π^* that maximizes the expected return R_t

$\pi^* = \arg\max_\pi E_\pi \{ R_t \}$

Define a value function V^π that stores the expected return for each state s under a certain policy π:

$V^\pi(s) = E_\pi \{ R_t | s_t = s \}$

$= E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\}$

then

$\pi^* = \arg\max_\pi V^\pi$

$V^*(s) = V^{\pi^*}(s) = \max_\pi V^\pi(s)$
Recursive definition

$$V^\pi(s) = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

$$= E_\pi \left\{ r_{t+1} + \sum_{k=1}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

$$= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right\}$$

$$= E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s \right\}$$

Allows us to write the optimal policy in terms of the optimal value function

$$\pi^*(s) = \arg\max_a E_\pi \left\{ r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a \right\}$$
Recursive definition

\[V^\pi(s) = E^\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \middle| s_t = s \right\} \]

\[= E^\pi \left\{ r_{t+1} + \sum_{k=1}^{\infty} \gamma^k r_{t+k+1} \middle| s_t = s \right\} \]

\[= E^\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \middle| s_t = s \right\} \]

\[= E^\pi \{ r_{t+1} + \gamma V^\pi(s_{t+1}) \middle| s_t = s \} \]

Allows us to write the optimal policy in terms of the optimal value function

\[\pi^*(s) = \arg \max_a E^\pi \{ r_{t+1} + \gamma V^*(s_{t+1}) \middle| s_t = s, a_t = a \} \]
Recursive definition

\[V^\pi(s) = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \sum_{k=1}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s \right\} \]

 Allows us to write the optimal policy in terms of the optimal value function

\[\pi^*(s) = \arg \max_a E_\pi \left\{ r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a \right\} \]
Recursive definition

\[V^\pi(s) = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \sum_{k=1}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s \right\} \]

Allows us to write the optimal policy in terms of the optimal value function

\[\pi^*(s) = \text{arg max}_a E_\pi \left\{ r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a \right\} \]
Recursive definition

\[V_\pi(s) = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \sum_{k=1}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma V_\pi(s_{t+1}) | s_t = s \right\} \]

Allows us to write the optimal policy in terms of the optimal value function

\[\pi^*(s) = \arg \max_a E_\pi \left\{ r_{t+1} + \gamma V^*(s_{t+1}) | s_t = s, a_t = a \right\} \]
Recursive definition

\[V^\pi(s) = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \sum_{k=1}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) | s_t = s \right\} \]

Allows us to write the optimal policy in terms of the optimal value function

\[\pi^*(s) = \arg \max_a E_\pi \{ r_{t+1} + \gamma V^*(s_{t+1}) | s_t = s, a_t = a \} \]
State-action value functions

Stores expected return for each state-action combination

\[Q^\pi(s, a) = E_\pi \{ R_t | s_t = s, a_t = a \} \]

\[= E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right\} \]

\[= E_\pi \{ r_{t+1} + \gamma Q^\pi(s_{t+1}, a_{t+1}) | s_t = s, a_t = a \} \]

Allows us to find optimal actions without calculating expectation

\[Q^*(s, a) = \max_\pi Q^\pi(s, a) \]

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]
State-action value functions

Stores expected return for each state-action combination

\[Q^\pi(s, a) = E_\pi \{ R_t | s_t = s, a_t = a \} \]

\[= E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right\} \]

\[= E_\pi \{ r_{t+1} + \gamma Q^\pi(s_{t+1}, a_{t+1}) | s_t = s, a_t = a \} \]

Allows us to find optimal actions without calculating expectation

\[Q^*(s, a) = \max_{\pi} Q^\pi(s, a) \]

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]
Example MDP

\[\gamma = 0.9 \]
\[\pi(s_0) = a_i \]
\[\pi(s_1) = a_d \]
\[\pi(s_2) = a_i \]
\[\pi(s_3) = a_s \]

\[Q^\pi(s_0, a_i) = -1 + \gamma \cdot -2 + \gamma^2 \cdot 1 \]
\[= -1 - 1.8 + 0.81 \]
\[= -1.99 \]
Example MDP

\[\gamma = 0.9 \]

\[\pi(s_0) = a_i \]
\[\pi(s_1) = a_d \]
\[\pi(s_2) = a_i \]
\[\pi(s_3) = a_s \]

\[Q^\pi(s_0, a_i) = -1 + \gamma \cdot -2 + \gamma^2 \cdot 1 \]
\[= -1 - 1.8 + 0.81 \]
\[= -1.99 \]
Example MDP

\[\gamma = 0.9 \]

\[\pi(s_0) = a_i \]

\[\pi(s_1) = a_d \]

\[\pi(s_2) = a_i \]

\[\pi(s_3) = a_s \]

\[Q^\pi(s_0, a_i) = -1 + \gamma \cdot -2 + \gamma^2 \cdot 1 \]

\[= -1 - 1.8 + 0.81 \]

\[= -1.99 \]
Example MDP

\[\gamma = 0.9 \]
\[\pi(s_0) = a_i \]
\[\pi(s_1) = a_d \]
\[\pi(s_2) = a_i \]
\[\pi(s_3) = a_s \]

\[
Q^\pi(s_0, a_i) = -1 + \gamma \cdot -2 + \gamma^2 \cdot 1 \\
= -1 - 1.8 + 0.81 \\
= -1.99
\]
Example MDP

$\gamma = 0.9$

$\pi(s_0) = a_i$

$\pi(s_1) = a_d$

$\pi(s_2) = a_i$

$\pi(s_3) = a_s$

$Q^\pi(s_0, a_i) = -1 + \gamma \cdot -2 + \gamma^2 \cdot 1$

$= -1 - 1.8 + 0.81$

$= -1.99$
Example MDP

\[\gamma = 0.9 \]

\[\pi(s_0) = a_i \]
\[\pi(s_1) = a_d \]
\[\pi(s_2) = a_i \]
\[\pi(s_3) = a_s \]

\[
Q^\pi(s_0, a_i) = -1 + \gamma \cdot -2 + \gamma^2 \cdot 1
= -1 - 1.8 + 0.81
= -1.99
\]
Example MDP, recursive version

\[\gamma = 0.9 \]

\[\pi(s_0) = a_i \]
\[\pi(s_1) = a_d \]
\[\pi(s_2) = a_i \]
\[\pi(s_3) = a_s \]

\[
\begin{align*}
Q^\pi(s_4,*) &= 0 + \gamma Q^\pi(s_4,*) \\
Q^\pi(s_3,a_s) &= 1 + \gamma Q^\pi(s_4,*) \\
Q^\pi(s_1,a_d) &= -2 + \gamma Q^\pi(s_3,a_s) \\
Q^\pi(s_0,a_i) &= -1 + \gamma Q^\pi(s_1,a_d)
\end{align*}
\]

\[= 0 \quad = 1 \quad = -1.1 \quad = -1.99 \]
Example MDP, recursive version

\(\gamma = 0.9 \)

\(\pi(s_0) = a_i \)

\(\pi(s_1) = a_d \)

\(\pi(s_2) = a_i \)

\(\pi(s_3) = a_s \)

\[
Q^\pi(s_4, \ast) = 0 + \gamma Q^\pi(s_4, \ast) = 0
\]

\[
Q^\pi(s_3, a_s) = 1 + \gamma Q^\pi(s_4, \ast) = 1
\]

\[
Q^\pi(s_1, a_d) = -2 + \gamma Q^\pi(s_3, a_s) = -1.1
\]

\[
Q^\pi(s_0, a_i) = -1 + \gamma Q^\pi(s_1, a_d) = -1.99
\]
\(\gamma = 0.9 \)

\(\pi(s_0) = a_i \)

\(\pi(s_1) = a_d \)

\(\pi(s_2) = a_i \)

\(\pi(s_3) = a_s \)

\[
\begin{align*}
Q^\pi(s_4, *) &= 0 + \gamma Q^\pi(s_4, *) \\
Q^\pi(s_3, a_s) &= 1 + \gamma Q^\pi(s_4, *) \\
Q^\pi(s_1, a_d) &= -2 + \gamma Q^\pi(s_3, a_s) \\
Q^\pi(s_0, a_i) &= -1 + \gamma Q^\pi(s_1, a_d)
\end{align*}
\]
Example MDP, recursive version

\(\gamma = 0.9 \)

\[
\begin{align*}
\pi(s_0) &= a_i \\
\pi(s_1) &= a_d \\
\pi(s_2) &= a_i \\
\pi(s_3) &= a_s
\end{align*}
\]

\[
\begin{align*}
Q^\pi(s_0, a_i) &= -1 + \gamma Q^\pi(s_1, a_i) \\
Q^\pi(s_1, a_s) &= 1 + \gamma Q^\pi(s_2, a_i) \\
Q^\pi(s_1, a_d) &= -2 + \gamma Q^\pi(s_3, a_s) \\
Q^\pi(s_2, a_i) &= -1 + \gamma Q^\pi(s_3, a_i)
\end{align*}
\]

\[
\begin{align*}
Q^\pi(s_4, *) &= 0 + \gamma Q^\pi(s_4, *) \\
&= 0 \\
Q^\pi(s_3, a_s) &= 1 + \gamma Q^\pi(s_4, *) \\
&= 1 \\
Q^\pi(s_1, a_d) &= -2 + \gamma Q^\pi(s_3, a_s) \\
&= -1.1 \\
Q^\pi(s_0, a_i) &= -1 + \gamma Q^\pi(s_1, a_d) \\
&= -1.99
\end{align*}
\]
Example MDP, recursive version

\[\gamma = 0.9 \]

\[\pi(s_0) = a_i \]
\[\pi(s_1) = a_d \]
\[\pi(s_2) = a_i \]
\[\pi(s_3) = a_s \]

\[Q^{\pi}(s_4, \ast) = 0 + \gamma Q^{\pi}(s_4, \ast) = 0 \]
\[Q^{\pi}(s_3, a_s) = 1 + \gamma Q^{\pi}(s_4, \ast) = 1 \]
\[Q^{\pi}(s_1, a_d) = -2 + \gamma Q^{\pi}(s_3, a_s) = -1.1 \]
\[Q^{\pi}(s_0, a_i) = -1 + \gamma Q^{\pi}(s_1, a_d) = -1.99 \]
Value function for pendulum swing-up

- System starts in down position, goal is to stabilize in the up position
- Can apply torque to the rotation axis
Can now evaluate value functions for arbitrary policies, but how do we find the optimal policy?

- Optimal policy is greedy with respect to optimal value function
 \[\pi^*(s) = \text{arg max}_a Q^*(s, a) \]

- Let \(\pi'(s) = \text{arg max}_a Q^\pi(s, a) \), then
 \[Q^{\pi'} \geq Q^\pi \]

Leads to iterative dynamic programming solutions
Outline

1. Introduction

2. The reinforcement learning problem

3. Solution techniques
 - Dynamic programming
 - Temporal difference learning
 - Policy search

4. Sample complexity

5. Hands-on
Overview

The reinforcement learning problem

Solution techniques

Sample complexity

Hands-on

Introduction

The reinforcement learning problem

Solution techniques

Sample complexity

Hands-on

Overview

MDP solvers

Dynamic Programming

Reinforcement learning

TD learning

Policy search

On-line TD learning

Fitted Q-iteration

Q-learning

SARSA

LSPI

Model

No model

Values

Policies

Single samples

Batches of samples

Off-policy

On-policy

Linear function approximation
Solves problems by breaking them down into simpler subproblems

- For MDPs, the solution to a future state is a subproblem to the solution for the current state

Follow the policy that is greedy with respect to the optimal value function, which satisfies the Bellman equation

\[
V^*(s) = \max_a \sum_{s'} p(s'|s,a) \left(\rho(s, a, s') + \gamma V^*(s') \right)
\]

\[
= \max_a \sum_{s'} p(s'|s,a) \left(\rho(s, a, s') + \gamma V^*(s') \right)
\]
Value iteration

Elementary solution method: iteratively approximate optimal value function

```
function VALUE ITERATION
    t ← 0
    V_0(s) ← 0 for all s
    repeat
        for each s do
            V_{t+1}(s) ← \max_a \sum_{s'} p(s' | s, a) (\rho(s, a, s') + \gamma V_t(s'))
        end for
        t ← t + 1
    until \| V_t - V_{t-1} \| < \epsilon
    return V
end function
```

Bootstrapping method: updates estimates based on estimates
Ditching the model

- Observations only occur in trajectories
- Cannot evaluate different actions in the same state
Ditching the model

- Observations only occur in trajectories
- Cannot evaluate different actions in the same state
Ditching the model

- Observations only occur in trajectories
- Cannot evaluate different actions in the same state
Temporal difference learning

Value iteration requires known transition model $p(s'|s, a)$. Temporal difference learning only samples it:

```plaintext
function TDLearning(\pi)
    s ← s_0
    V^\pi(s) ← 0 for all s
    repeat
        Sample $s' \sim p(s'|s, \pi(s))$ and reward $r = \rho(s, a, s')$
        $V^\pi(s) ← V^\pi(s) + \alpha (r + \gamma V^\pi(s') - V^\pi(s))$
        s ← s'
    until convergence
    return $V$
end function

\alpha$ is a learning rate that acts as an exponential moving average filter
```
Temporal difference learning

Value iteration requires known transition model \(p(s'|s, a) \). Temporal difference learning only samples it:

```plaintext
function TDLearning(\( \pi \))

s ← s_0

V^\pi(s) ← 0 for all s

repeat

Sample \( s' \sim p(s'|s, \pi(s)) \) and reward \( r = \rho(s, a, s') \)

\[ V^\pi(s) \leftarrow V^\pi(s) + \alpha (r + \gamma V^\pi(s') - V^\pi(s)) \]

s ← s'

until convergence

return V

end function
```

\(\alpha \) is a learning rate that acts as an exponential moving average filter.
Q-learning: Temporal difference control

TD learning estimates state-value function $V^\pi(s)$. For control, we must estimate state-action value function $Q(s, a)$ instead. Q-learning estimates the optimal state-action value function $Q^*(s, a)$:

```
function QLEARNING
    s ← s_0
    Q(s, a) ← 0 for all s, a
    repeat
        a ← arg\max_a Q(s, a)
        Sample $s' \sim p(s'|s, a)$ and reward $r = \rho(s, a, s')$
        $Q(s, a) ← Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a') - Q(s, a))$
        s ← s'
    until convergence
    return Q
end function
```
To guarantee convergence, every state has to be sampled an infinite number of times.

- In dynamic programming, this is guaranteed by sweeping the entire state space.
- When only trajectory sampling is available, requires exploration.
- Use a stochastic exploration policy derived from $Q(s, a)$, e.g. (ε-greedy)

$$\pi(a|s) = \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|A|} & \text{if } a = \arg\max_{a'} Q(s, a') \\ \frac{\varepsilon}{|A|} & \text{otherwise} \end{cases}$$

Exploration-exploitation trade-off

Choose between exploiting current knowledge (refining current known best policy) or exploring new knowledge (finding better policies).
Exploration

To guarantee convergence, every state has to be sampled an infinite number of times.

- In dynamic programming, this is guaranteed by sweeping the entire state space.
- When only trajectory sampling is available, requires exploration
- Use a stochastic exploration policy derived from $Q(s, a)$, e.g. (ϵ-greedy)

$$
\pi(a|s) = \begin{cases}
1 - \epsilon + \frac{\epsilon}{|A|} & \text{if } a = \arg\max_{a'} Q(s, a') \\
\frac{\epsilon}{|A|} & \text{otherwise}
\end{cases}
$$

Exploration-exploitation trade-off

Choose between exploiting current knowledge (refining current known best policy) or exploring new knowledge (finding better policies)
SARSA: on-policy TD control

Q-learning finds the value function of the optimal policy π^* while following a stochastic exploratory policy π. SARSA finds the value function of π itself:

$$Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma Q(s', a') - Q(s, a))$$

- Better convergence properties when using function approximation
- Safer during learning
Q-learning and SARSA treat each sample only once, but that is inefficient. We can instead use all samples \((s_i, a_i) \rightarrow (r_i, s'_i)\) simultaneously (fitted Q-iteration).
Fitted Q iteration

function FittedQIteration

\[k \leftarrow 0, \hat{Q}_k \leftarrow 0 \]

repeat

for each sample \(i \) do

\[\pi(s'_i) = \arg \max_a \hat{Q}_k(s'_i, a) \]

\[\hat{Q}_{k+1}(s_i, a_i) \leftarrow r_i + \gamma \hat{Q}_k(s'_i, \pi(s'_i)) \]

end for

\[k \leftarrow k + 1 \]

until \[\| \hat{Q}_k - \hat{Q}_{k-1} \| < \varepsilon \]

return \(\hat{Q}_k \)

end function

\(\hat{Q} \) can be approximated by any supervised learning algorithm.
Least squares approximation

We know that for every sample \((s_i, a_i) \rightarrow (r_i, s'_i)\), \(\hat{Q}^\pi\) has to satisfy

\[
\hat{Q}^\pi(s_i, a_i) = r_i + \gamma \hat{Q}^\pi(s'_i, \pi(s'_i))
\]

Given features \(\phi(s, a)\) and a linear function approximator \(\hat{Q}(s, a) = \phi(s, a)^T \theta\) with parameters \(\theta\), every sample \(i\) induces a constraint

\[
\phi(s_i, a_i)^T \theta = r_i + \gamma \phi(s'_i, \pi(s'_i))^T \theta,
\]

such that

\[
(\phi(s_i, a_i)^T - \gamma \phi(s'_i, \pi(s'_i))^T) \theta = r_i
\]

In this case, we can estimate \(\hat{Q}^\pi\) directly using least squares fitting, although we still need to iterate \(\pi(s) \leftarrow \max_a \phi(s, a)^T \theta\) to get \(\hat{Q}^*\).
Least squares approximation

We know that for every sample \((s_i, a_i) \rightarrow (r_i, s'_i)\), \(\hat{Q}^\pi\) has to satisfy

\[
\hat{Q}^\pi(s_i, a_i) = r_i + \gamma \hat{Q}^\pi(s'_i, \pi(s'_i))
\]

Given features \(\phi(s, a)\) and a linear function approximator \(\hat{Q}(s, a) = \phi(s, a)^T \theta\) with parameters \(\theta\), every sample \(i\) induces a constraint

\[
\phi(s_i, a_i)^T \theta = r_i + \gamma \phi(s'_i, \pi(s'_i))^T \theta, \text{ such that } \\
(\phi(s_i, a_i)^T - \gamma \phi(s'_i, \pi(s'_i))^T) \theta = r_i
\]

In this case, we can estimate \(\hat{Q}^\pi\) directly using least squares fitting, although we still need to iterate \(\pi(s) \leftarrow \max_a \phi(s, a)^T \theta\) to get \(\hat{Q}^*\).
Least squares approximation

We know that for every sample \((s_i, a_i) \rightarrow (r_i, s'_i), \hat{Q}^\pi\) has to satisfy

\[
\hat{Q}^\pi(s_i, a_i) = r_i + \gamma \hat{Q}^\pi(s'_i, \pi(s'_i))
\]

Given features \(\phi(s, a)\) and a linear function approximator \(\hat{Q}(s, a) = \phi(s, a)^T \theta\) with parameters \(\theta\), every sample \(i\) induces a constraint

\[
\phi(s_i, a_i)^T \theta = r_i + \gamma \phi(s'_i, \pi(s'_i))^T \theta , \text{ such that}
\]

\[
(\phi(s_i, a_i)^T - \gamma \phi(s'_i, \pi(s'_i))^T) \theta = r_i
\]

In this case, we can estimate \(\hat{Q}^\pi\) directly using least squares fitting, although we still need to iterate \(\pi(s) \leftarrow \max_a \phi(s, a)^T \theta\) to get \(\hat{Q}^*\).
Direct policy search

Why use a value function?

Policy search works directly on the parameters θ of a parameterized policy $\pi(s; \theta)$.
Direct policy search

Why use a value function?

Policy search works directly on the parameters θ of a parameterized policy $\pi(s; \theta)$.
What form should the policy take?

- **Low-level**
 - PD?
 - Dynamic movement primitives?
 - Radial basis functions?
 - Neural network?

- **High-level**
 - Via point placement?
 - Center of mass trajectory?
 - etc.
What form should the policy take?

- **Low-level**
 - PD?
 - Dynamic movement primitives?
 - Radial basis functions?
 - Neural network?

- **High-level**
 - Via point placement?
 - Center of mass trajectory?
 - etc.
What form should the policy take?

- **Low-level**
 - PD?
 - Dynamic movement primitives?
 - Radial basis functions?
 - Neural network?

- **High-level**
 - Via point placement?
 - Center of mass trajectory?
 - etc.
What form should the policy take?

- Low-level
 - PD?
 - Dynamic movement primitives?
 - Radial basis functions?
 - Neural network?

- High-level
 - Via point placement?
 - Center of mass trajectory?
 - etc.
Policy parameterization

What form should the policy take?

- Low-level
 - PD?
 - Dynamic movement primitives?
 - Radial basis functions?
 - Neural network?

- High-level
 - Via point placement?
 - Center of mass trajectory?
 - etc.
What form should the policy take?

- **Low-level**
 - PD?
 - Dynamic movement primitives?
 - Radial basis functions?
 - Neural network?

- **High-level**
 - Via point placement?
 - Center of mass trajectory?
 - etc.
Black-box optimization routine, competitive with state-of-the-art Markov-based schemes.

```plaintext
function BLACKBOXPI^2
    g ← 0
    Initialize θ₀ randomly
    repeat
        for k in K do
            ε_k = N(0, Σ), R_k = rollout(θ_g + ε_k)
        end for
        for k in K do
            w_k = \frac{e^{\frac{1}{K} R_k}}{\sum_{k=1}^{K} e^{\frac{1}{K} R_k}}
        end for
        θ_{g+1} = θ_g + \sum_{k=1}^{K} w_k (θ_g + ε_k)
        g ← g + 1
    until converged
end function
```
Policy search versus TD learning

Advantages
- Smoother policies
- Parameter space could be smoother
- Parameter space is generally smaller

Disadvantages
- Parameterization requires system knowledge
- Only locally optimal (may get stuck in local minima)
- Rollouts are noisy
Outline

1. Introduction
2. The reinforcement learning problem
3. Solution techniques
4. Sample complexity
 - Eligibility traces
 - Value function approximation
 - Indirect reinforcement learning
 - Local bias
5. Hands-on
Sample complexity is the number of samples required to learn the task (interaction time).

Does not include computation time (computational complexity)
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, *eligible* states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, \textit{eligible} states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, *eligible* states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states, and update based on the eligibility.
Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, *eligible* states, and update based on the eligibility.
Value function approximation

Robots work in continuous state spaces. How to discretize the value function?

- LEO: 12-dimensional state-action space. Assume each discretized in N steps $\rightarrow N^{12}$ values!
- Say $N = 10$, float values \rightarrow 4 TB memory to be stored and filled.

Generalization

To be sample-efficient, experience must be generalized.
Generalization always has a bias-variance trade-off.
Robots work in *continuous* state spaces. How to discretize the value function?

- **LEO**: 12-dimensional state-action space. Assume each discretized in N steps $\rightarrow N^{12}$ values!

- Say $N = 10$, *float* values \rightarrow 4 TB memory to be stored and filled.

Generalization

To be sample-efficient, experience must be *generalized*. Generalization always has a bias-variance trade-off.
Tile coding

Linear function approximator using overlapping grids.

Convergence guarantees due to linearity $\hat{Q}(s) = \phi(s, a)^T \theta$.
Neural networks

- Less parameters (faster generalization)
- Updates have global, non-linear effects (no convergence guarantees, *forgetting*)
Local changes

Forests provide finer granularity and variance estimation.
Indirect reinforcement learning

Direct reinforcement learning solves MDPs by interacting directly with the environment.

Indirect reinforcement learning learns a model as an intermediary step.
Indirect reinforcement learning

Direct reinforcement learning solves MDPs by interacting directly with the environment.

Indirect reinforcement learning learns a model as an intermediary step.
Model approximation

Generalizes in a different space than value function approximation. It approximates the transition function $p(s'|s,a) = \mathcal{T}(s,a,s')$. Since in a Markov process this is static, it is a supervised learning problem.

- Allows simulating additional transitions (mental rehearsal)
- Provides an estimate of $\frac{\partial s}{\partial a}$ for better policy updates
- Allows derivation of π from state-value function V instead of state-action value function Q.

Model learning versus system identification

Model learning is performed on-line and therefore has an exploration-exploitation trade-off. Model fidelity should be high along the trajectory of the optimal policy.
Model approximation

Generalizes in a different space than value function approximation. It approximates the transition function \(p(s'\mid s, a) = \mathcal{T}(s, a, s') \). Since in a Markov process this is static, it is a supervised learning problem.

- Allows simulating additional transitions (mental rehearsal)
- Provides an estimate of \(\frac{\partial s}{\partial a} \) for better policy updates
- Allows derivation of \(\pi \) from state-value function \(V \) instead of state-action value function \(Q \).

Model learning versus system identification

Model learning is performed on-line and therefore has an exploration-exploitation trade-off. Model fidelity should be high along the trajectory of the optimal policy.
Generalizes in a different space than value function approximation. It approximates the transition function $p(s'|s, a) = T(s, a, s')$. Since in a Markov process this is static, it is a \textit{supervised} learning problem.

- Allows simulating additional transitions (mental rehearsal)
- Provides an estimate of $\frac{\partial s}{\partial a}$ for better policy updates
- Allows derivation of π from state-value function V instead of state-action value function Q.

Model learning versus system identification

Model learning is performed \textit{on-line} and therefore has an exploration-exploitation trade-off. Model fidelity should be high along the trajectory of the optimal policy.
Locally weighted regression

Very successful model approximator for robotics

- Find k nearest neighbors
 - Approximate nearest neighbor search
- Weigh according to distance
 \[w(p) = e^{-\left(\frac{|p-q|_2}{h}\right)^2} \]
 where h is the distance to the kth nearest neighbor
- Fit linear model using least-squares regression
DYNA

- Perform K simulated updates per control step
- Mix of direct and indirect reinforcement learning
- Simulated updates can be done anywhere (prioritized sweeping)

[Sutton & Barto, 1998]
Model-learning policy search. By approximating the system dynamics with a gaussian process model, can *analytically* calculate $\frac{dR}{d\theta}$.

[Deisenroth & Rasmussen, 2011]
Model-learning policy search. By approximating the system dynamics with a gaussian process model, can analytically calculate $\frac{dR}{d\theta}$.

[Deisenroth & Rasmussen, 2011]
When controlling a system, we always want to find the best action for the current state.

Therefore it makes sense to concentrate planning around the current state.
Local bias

When controlling a system, we always want to find the best action for the current state.

Therefore it makes sense to concentrate planning around the current state.
Some algorithms that use local bias

<table>
<thead>
<tr>
<th></th>
<th>RTDP</th>
<th>TEXPLORE</th>
<th>DYNA-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Given</td>
<td>Learned</td>
<td>Learned</td>
</tr>
<tr>
<td>Planning</td>
<td>Best-first search</td>
<td>Monte-carlo tree search (UCT)</td>
<td>TD learning</td>
</tr>
<tr>
<td>Value function</td>
<td>Updated from experience + model</td>
<td>Updated from model</td>
<td>Separate for experience + model</td>
</tr>
<tr>
<td>Control</td>
<td>From value function</td>
<td>From UCT</td>
<td>From weighted sum of value functions</td>
</tr>
</tbody>
</table>
Recap

- Reinforcement learning is model-free optimal control
- Value-based RL is sampled dynamic programming
 - First estimates a value function, after which the optimal policy is one-step greedy
- Policy search directly searches in the space of parameterized policies, can solve larger problems, but is only locally optimal
 - Requires suitable initialization
- Many approaches exist to make RL practical on real systems
Experiment with parameter settings for reinforcement learning for the pendulum swing-up problem

Manual

Matlab toolbox

Run `pendgui` from the toolbox directory
Q1: Learning rate α

$\alpha = 0.2$

$\alpha = 0.7$
Q2: On-policy vs off-policy learning

\[\epsilon = 0.05 \]
Q2: On-policy vs off-policy learning

\[\varepsilon = 0.01 \]
Q3: State space resolution

\[\alpha = 0.7 \]
Q3: State space resolution

\[\alpha = 0.1 \]

On-policy

Off-policy
Q4: Discount rate γ

$\gamma = 0.97$

$\gamma = 0.87$
Q5: Discount rate γ (2)

$\gamma = 0.87$

$\gamma = 0.57$
Q6: Reward function

$\gamma = 0.57$

Path rewards

Goal rewards
Q7: On-policy vs off-policy learning (2)

$$\gamma = 0.57, \text{ goal rewards, } \varepsilon = 0.45$$

On-policy

Off-policy
Q8: Initial value

Episodes = 2000

Initial value 0

Initial value -500