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What is reinforcement learning?

[R. Nagel, 2008]
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What is reinforcement learning?

Supervised learning
Given samples of x → y , find y = f (x)
(regression)

Reinforcement learning
Given samples of (x ,y)→ z, find y = f (x) that
maximizes z.

Unsupervised learning
Given a dataset x , find interesting patterns
(clusters, relations, etc.)
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Learning by trial and error

Goal
Find actions that maximize the reward received over the lifetime of the
agent.
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Why reinforcement learning?

Specify the problem, not the solution
Easier: desired outcome is usually known
Still tricky: reward engineering

Can deal with delayed rewards
Optimizes over all future rewards

Model-free
No mapping, system identification, etc. beforehand
Works in any (static) environment
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Context of learning control
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Interactive (no model)

All actions are sequentially executed in the real world.

Sequentially
Observations only occur in trajectories
Cannot evaluate different actions in the same state

Real world
Actions take real time
Actions must be selected as fast as possible
Dangerous actions can damage the system
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Cost per step

Reward is available at intermediate steps and only based on the
current transition.

Intermediate steps
Allows us to assign credit to particular actions
May be delayed

Based on current transition
No integrated costs at the end of a trajectory
No "target arrival time" unless time can be observed
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Example: LEO

Main characteristics:

‘2D‘ (boom keeps hip axis horizontal)

∼50 cm

∼1.7 kg

7 servo motors (Dynamixel)

On-board computing

Autonomous (except power)

Task:
Learn to walk

[Schuitema et al., 2010]
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Example: LEO

[Schuitema, 2010]
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Example: Pancake flipping

[Kormuschev et al., 2010]
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Outline

1 Introduction

2 The reinforcement learning problem
Markov decision processes
Value functions

3 Solution techniques

4 Sample complexity

5 Hands-on
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Markov chain

Next state depends only on current state

Transitions may be stochastic, but distribution must be static
given the current state
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Markov process

Action also influences next state
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Markov decision process

Introduces optimization criterion: find actions that maximize
reward

Reward (cost) depends only on the state transition
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States and actions

Next state depends only on current state and action

Given current state and action, next state distribution is static
p(s′|s,a) = T (s,a,s′)

History-independent
p(sn|s1,a1,s2,a2, . . . ,sn−1,an−1) = p(sn|sn−1,an−1)

x

θ

F

gm

l

mc

g, m, θ , θ̇ , θ̈ , l , mc , F , x , ẋ , ẍ
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Rewards

Determine the task

Depend only on the current state transition
p(r |s,a,s′) = ρ(s,a,s′)

Learning goal is to maximize the expected return
Rt = rt+1 + rt+2 + · · ·+ rT

Should reward desirable behaviors and punish undesirable ones

In practice, often given by designer instead of environment

Define the problem, not the solution (reward engineering).
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Episodic and continuing tasks

Some tasks are naturally episodic:
Reaching, grasping, standing up, kicking, etc.

Others are continuing:
Holding, balancing, walking, etc.

Continuing tasks (T = ∞) may have infinite returns

Introduce discounted return:

Rt = rt+1 + γrt+2 + γ
2rt+3 + · · ·

=
∞

∑
k=0

γ
k rt+k+1

Discount factor γ ∈ [0,1] determines task horizon
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Control policy

Specifies which action to take in each state

Due to Markov property, only has to depend on current state
π(a|s) = f (s)

Optimal policy π∗ maximizes expected return

π
∗ = argmax

π

Eπ {Rt}

Optimal subproblems

In an acyclic MDP, the optimal policy for a state s is independent of the
optimal policy for the preceeding states, leading to recursive solutions.
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Control scheme
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Robot task modeled as an MDP

States:
s = [θ , θ̇ ]

Actions:
a = τ

Transition function:
s′ = s +

∫ t
0 eom(s,a)dt +N (µ,σ)

Rewards:
r =−sQsT −Pa2

Policy:
a = π(s)
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Value functions

Learning goal: find optimal policy π∗ that maximizes the expected
return Rt

π
∗ = argmax

π

Eπ {Rt}

Define a value function V π that stores the expected return for each
state s under a certain policy π :

V π(s) = Eπ {Rt |st = s}

= Eπ

{
∞

∑
k=0

γ
k rt+k+1|st = s

}
then

π
∗ = argmax

π

V π

V ∗(s) = V π∗(s) = max
π

V π(s)
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Recursive definition

V π(s) = Eπ

{
∞

∑
k=0

γ
k rt+k+1|st = s

}

= Eπ

{
rt+1 +

∞

∑
k=1

γ
k rt+k+1|st = s

}

= Eπ

{
rt+1 + γ

∞

∑
k=0

γ
k rt+k+2|st = s

}
= Eπ {rt+1 + γV π(st+1)|st = s}

Allows us to write the optimal policy in terms of the optimal value
function

π
∗(s) = argmax

a
Eπ {rt+1 + γV ∗(st+1)|st = s,at = a}
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State-action value functions

Stores expected return for each state-action combination

Qπ(s,a) = Eπ {Rt |st = s,at = a}

= Eπ

{
∞

∑
k=0

γ
k rt+k+1|st = s,at = a

}
= Eπ {rt+1 + γQπ(st+1,at+1)|st = s,at = a}

Allows us to find optimal actions without calculating expectation

Q∗(s,a) = max
π

Qπ(s,a)

π
∗(s) = argmax

a
Q∗(s,a)
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Example MDP

γ = 0.9

π(s0) = ai

π(s1) = ad

π(s2) = ai

π(s3) = as

a i, -1

ad, -2

a i, -1

as, -1

as, 1
0

Robot far from ball
Ball far from goal

s0

Robot near ball
Ball far from goal

s1

Robot near ball
Ball near goal

s3

Robot far from ball
Ball near goal

s2

Score

s4

Qπ(s0,ai) = −1 + γ ·−2 + γ
2 ·1

=−1−1.8 + 0.81

=−1.99
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Example MDP, recursive version
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Qπ(s4,∗) = 0 + γQπ(s4,∗) = 0

Qπ(s3,as) = 1 + γQπ(s4,∗) = 1

Qπ(s1,ad ) =−2 + γQπ(s3,as) =−1.1

Qπ(s0,ai) =−1 + γQπ(s1,ad ) =−1.99
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Value function for pendulum swing-up

θ

g

l

m

θ[rad]

θ'
 [r

ad
/s

]

-3 -2 -1 0 1 2 3

-30

-20

-10

0

10

20

30

System starts in down position, goal is to stabilize in the up
position

Can apply torque to the rotation axis



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Control

Can now evaluate value functions for arbitrary policies, but how do we
find the optimal policy?

Optimal policy is greedy with respect to optimal value function
π∗(s) = argmaxa Q∗(s,a)

Let π ′(s) = argmaxa Qπ(s,a), then
Qπ ′ ≥ Qπ

Leads to iterative dynamic programming solutions
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2 The reinforcement learning problem

3 Solution techniques
Dynamic programming
Temporal difference learning
Policy search

4 Sample complexity
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Overview
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Dynamic programming

Solves problems by breaking them down into simpler subproblems

For MDPs, the solution to a future state is a subproblem to the
solution for the current state

Follow the policy that is greedy with respect to the optimal value
function, which satisfies the Bellman equation

V ∗(s) = max
a

Es′
{

ρ(s,a,s′) + γV ∗(s′)
}

= max
a ∑

s′
p(s′|s,a)

(
ρ(s,a,s′) + γV ∗(s′)

)
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Value iteration

Elementary solution method: iteratively approximate optimal value
function

function VALUEITERATION

t ← 0
V0(s)← 0 for all s
repeat

for each s do
Vt+1(s)←maxa ∑s′ p(s′|s,a)(ρ(s,a,s′) + γVt(s′))

end for
t ← t + 1

until ‖Vt −Vt−1‖< ε

return V
end function

Bootstrapping method: updates estimates based on estimates
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Ditching the model

Observations only occur in trajectories

Cannot evaluate different actions in the same state



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Ditching the model

Observations only occur in trajectories

Cannot evaluate different actions in the same state



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Ditching the model

Observations only occur in trajectories

Cannot evaluate different actions in the same state



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Temporal difference learning

Value iteration requires known transition model p(s′|s,a). Temporal
difference learning only samples it:

function TDLEARNING(π)
s← s0

V π(s)← 0 for all s
repeat

Sample s′ ∼ p(s′|s,π(s)) and reward r = ρ(s,a,s′)
V π(s)← V π(s) + α (r + γV π(s′)−V π(s))
s← s′ Temporal difference error

until convergence
return V

end function

α is a learning rate that acts as an exponential moving average filter
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Q-learning: Temporal difference control

TD learning estimates state-value function V π(s). For control, we
must estimate state-action value function Q(s,a) instead. Q-learning
estimates the optimal state-action value function Q∗(s,a):

function QLEARNING

s← s0

Q(s,a)← 0 for all s,a
repeat

a← argmaxa Q(s,a)
Sample s′ ∼ p(s′|s,a) and reward r = ρ(s,a,s′)
Q(s,a)← Q(s,a) + α (r + γ maxa′ Q(s′,a′)−Q(s,a))
s← s′

until convergence
return Q

end function
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Exploration

To guarantee convergence, every state has to be sampled an infinite
number of times.

In dynamic programming, this is guaranteed by sweeping the
entire state space.

When only trajectory sampling is available, requires exploration

Use a stochastic exploration policy derived from Q(s,a), e.g.
(ε-greedy)

π(a|s) =

{
1− ε + ε

|A| ifa = argmaxa′ Q(s,a′)
ε

|A| otherwise

Exploration-exploitation trade-off

Choose between exploiting current knowledge (refining current known
best policy) or exploring new knowledge (finding better policies)
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SARSA: on-policy TD control

Q-learning finds the value function of the optimal policy π∗ while
following a stochastic exploratory policy π . SARSA finds the value
function of π itself:

Q(s,a)← Q(s,a) + α
(
r + γQ(s′,a′)−Q(s,a)

)
Better convergence properties when using function approximation

Safer during learning
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Batch techniques

Q-learning and SARSA treat each sample only once, but that is
inefficient. We can instead use all samples (si ,ai)→ (ri ,s′i )
simultaneously (fitted Q-iteration)
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Fitted Q iteration

function FITTEDQITERATION

k ← 0, Q̂k ← 0
repeat

for each sample i do
π(s′i ) = argmaxa Q̂k (s′i ,a)
Q̂k+1(si ,ai)← ri + γQ̂k (s′i ,π(s′i ))

end for
k ← k + 1

until ‖Q̂k − Q̂k−1‖< ε

return Q̂k

end function

Q̂ can be approximated by any supervised learning algorithm.
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Least squares approximation

We know that for every sample (si ,ai)→ (ri ,s′i ), Q̂π has to satisfy

Q̂π(si ,ai) = ri + γQ̂π(s′i ,π(s′i ))

Given features φ(s,a) and a linear function approximator
Q̂(s,a) = φ(s,a)T θ with parameters θ , every sample i induces a
constraint

φ(si ,ai)
T

θ = ri + γφ(s′i ,π(s′i ))T
θ ,such that(

φ(si ,ai)
T − γφ(s′i ,π(s′i ))T)

θ = ri

In this case, we can estimate Q̂π directly using least squares fitting,
although we still need to iterate π(s)←maxa φ(s,a)T θ to get Q̂∗.



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Least squares approximation

We know that for every sample (si ,ai)→ (ri ,s′i ), Q̂π has to satisfy

Q̂π(si ,ai) = ri + γQ̂π(s′i ,π(s′i ))

Given features φ(s,a) and a linear function approximator
Q̂(s,a) = φ(s,a)T θ with parameters θ , every sample i induces a
constraint

φ(si ,ai)
T

θ = ri + γφ(s′i ,π(s′i ))T
θ ,such that(

φ(si ,ai)
T − γφ(s′i ,π(s′i ))T)

θ = ri

In this case, we can estimate Q̂π directly using least squares fitting,
although we still need to iterate π(s)←maxa φ(s,a)T θ to get Q̂∗.



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Least squares approximation

We know that for every sample (si ,ai)→ (ri ,s′i ), Q̂π has to satisfy

Q̂π(si ,ai) = ri + γQ̂π(s′i ,π(s′i ))

Given features φ(s,a) and a linear function approximator
Q̂(s,a) = φ(s,a)T θ with parameters θ , every sample i induces a
constraint

φ(si ,ai)
T

θ = ri + γφ(s′i ,π(s′i ))T
θ ,such that(

φ(si ,ai)
T − γφ(s′i ,π(s′i ))T)

θ = ri

In this case, we can estimate Q̂π directly using least squares fitting,
although we still need to iterate π(s)←maxa φ(s,a)T θ to get Q̂∗.



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Direct policy search

Why use a value function?

Policy search works directly on the parameters θ of a parameterized
policy π(s;θ).
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Policy parameterization

What form should the policy take?

Low-level
PD?
Dynamic movement primitives?
Radial basis functions?
Neural network?

High-level
Via point placement?
Center of mass trajectory?
etc.

Kp

Kd
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Policy parameterization

What form should the policy take?

Low-level
PD?
Dynamic movement primitives?
Radial basis functions?
Neural network?

High-level
Via point placement?
Center of mass trajectory?
etc.

State

Action

Σ Σ Σ Σ Σ Σ

Σ Σ

Wh

Wo
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Policy parameterization

What form should the policy take?

Low-level
PD?
Dynamic movement primitives?
Radial basis functions?
Neural network?

High-level
Via point placement?
Center of mass trajectory?
etc.

CoM
(z)

t



Introduction The reinforcement learning problem Solution techniques Sample complexity Hands-on

Black-box PI2

Black-box optimization routine, competitive with state-of-the-art
Markov-based schemes.

function BLACKBOXPI2

g← 0
Initialize θ0 randomly
repeat

for k in K do
εk = N (0,Σ), Rk = rollout(θg + εk )

end for
for k in K do

wk = e
1
K Rk

∑
K
k=1 e

1
K Rk

end for
θg+1 = θg + ∑

K
k=1 wk (θg + εk )

g← g + 1
until converged

end function
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Policy search versus TD learning

Advantages

Smoother policies

Parameter space could be smoother

Parameter space is generally smaller

Disadvantages

Parameterization requires system knowledge

Only locally optimal (may get stuck in local minima)

Rollouts are noisy
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Outline

1 Introduction

2 The reinforcement learning problem

3 Solution techniques

4 Sample complexity
Eligibility traces
Value function approximation
Indirect reinforcement learning
Local bias

5 Hands-on
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Sample complexity

Sample complexity is the number of samples required to learn the task
(interaction time).

Does not include computation time (computational complexity)
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Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states,
and update based on the eligibility.
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Eligibility traces

Standard TD methods update only the current state.

Eligibility trace methods keep a list of recently visited, eligible states,
and update based on the eligibility.
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Value function approximation

Robots work in continuous state spaces. How to discretize the value
function?

LEO: 12-dimensional state-action space. Assume each
discretized in N steps→ N12 values!

Say N = 10, float values→ 4 TB memory to be stored and
filled.

Generalization
To be sample-efficient, experience must be generalized.
Generalization always has a bias-variance trade-off.
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Tile coding

Linear function approximator using overlapping grids.

Convergence guarantees due to linearity Q̂(s) = φ(s,a)T θ .
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Neural networks

State

Action

Σ Σ Σ Σ Σ Σ

Σ Σ

Wh

Wo

Less parameters (faster generalization)

Updates have global, non-linear effects (no convergence
guarantees, forgetting)
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Trees

Local changes

Forests provide finer granularity and variance estimation.
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Indirect reinforcement learning

Direct reinforcement learning solves MDPs by interacting directly with
the environment

Indirect reinforcement learning learns a model as an intermediary step.
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Model approximation

Generalizes in a different space than value function approximation. It
approximates the transition function p(s′|s,a) = T (s,a,s′) . Since in
a Markov process this is static, it is a supervised learning problem.

Allows simulating additional transitions (mental rehearsal)

Provides an estimate of ∂s
∂a for better policy updates

Allows derivation of π from state-value function V instead of
state-action value function Q.

Model learning versus system identification

Model learning is performed on-line and therefore has an
exploration-exploitation trade-off. Model fidelity should be high along
the trajectory of the optimal policy.
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Locally weighted regression

Very successful model approximator for robotics

Find k nearest neighbors
Approximate nearest
neighbor search

Weigh according to
distance

w(p) = e
−
(
|p−q|2

h

)2

where h is the distance to
the k th nearest neighbor

Fit linear model using
least-squares regression
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DYNA

[Sutton & Barto, 1998]

Perform K simulated updates per control step

Mix of direct and indirect reinforcement learning

Simulated updates can be done anywhere (prioritized sweeping)
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PILCO

Model-learning policy search. By approximating the system dynamics
with a gaussian process model, can analytically calculate dR

dθ
.

[Deisenroth & Rasmussen, 2011]
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Model-learning policy search. By approximating the system dynamics
with a gaussian process model, can analytically calculate dR

dθ
.

[Deisenroth & Rasmussen, 2011]
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Local bias

When controlling a system, we always want to find the best action for
the current state.

Therefore it makes sense to concentrate planning around the current
state
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Some algorithms that use local bias

RTDP TEXPLORE DYNA-2
Model Given Learned Learned
Planning Best-first search Monte-carlo

tree search
(UCT)

TD learning

Value
function

Updated from
experience +
model

Updated from
model

Separate for
experience +
model

Control From value
function

From UCT From weighted
sum of value
functions
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Recap

Reinforcement learning is model-free optimal control
Value-based RL is sampled dynamic programming

First estimates a value function, after which the optimal policy is
one-step greedy

Policy search directly searches in the space of parameterized
policies, can solve larger problems, but is only locally optimal

Requires suitable initialization

Many approaches exist to make RL practical on real systems
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Hands-on

Experiment with parameter settings for reinforcement learning for the
pendulum swing-up problem

Manual
http://wouter.caarls.org/files/kss2014_tutorial.pdf

Matlab toolbox
http://wouter.caarls.org/files/kss2014_tutorial.tgz

Run pendgui from the toolbox directory

http://wouter.caarls.org/files/kss2014_tutorial.pdf
http://wouter.caarls.org/files/kss2014_tutorial.tgz
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Q1: Learning rate α

α = 0.2 α = 0.7
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Q2: On-policy vs off-policy learning

ε = 0.05

On-policy Off-policy
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Q2: On-policy vs off-policy learning

ε = 0.01

On-policy Off-policy
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Q3: State space resolution

α = 0.7

On-policy Off-policy
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Q3: State space resolution

α = 0.1

On-policy Off-policy
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Q4: Discount rate γ

γ = 0.97 γ = 0.87
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Q5: Discount rate γ (2)

γ = 0.87 γ = 0.57
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Q6: Reward function

γ = 0.57

Path rewards Goal rewards
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Q7: On-policy vs off-policy learning (2)

γ = 0.57, goal rewards, ε = 0.45

On-policy Off-policy
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Q8: Initial value

Episodes = 2000

Initial value 0 Initial value -500
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