
Springer Nature 2021 LATEX template

Comparison of reinforcement learning

techniques for controlling a CSTR process∗

Eric Monteiro L Luz1 and Wouter Caarls1

1*Department of Electrical Engineering, Pontifical Catholic
University of Rio de Janeiro, Rua Marquês de São Vicente, 225,

Rio de Janeiro, 22541-041, RJ, Brazil.

Contributing authors: eric.luz@outlook.com; wouter@caarls.org;

Abstract

One of the main promises of Industry 4.0 is the incorporation of com-
putational intelligence techniques in industrial process control. For the
chemical industry, the efficiency of the control strategy can reduce
the production of effluents and the consumption of raw materials and
energy. A possible, although currently underutilized approach is rein-
forcement learning (RL), which can be used to optimize many sequential
decision making processes through training. This work used Van de
Vusse kinetics as an evaluation environment for controllers based on
reinforcement learning and comparison with conventional solutions like
non-linear model predictive control (NMPC). These kinetics contain
characteristics that make it difficult for classic controllers such as PID
to handle, such as its non-linearity and inversion point. The investigated
algorithms showed excellent results for this notable chemical process
control benchmark. This study was divided into two experiments: set-
point change and operation around the inversion point. The former
showed the ability of RL controllers to adjust the controlled variable
and simultaneously maximize production. The latter revealed the excel-
lent management capability of the reinforcement learning algorithms and
NMPC at the inversion point. In this study, the RL algorithms performed
similar to NMPC but with lower computational cost after training.

∗This version of the article has been accepted for publication, after peer review (when
applicable) but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at: http:
//dx.doi.org/10.1007/s43153-023-00422-y. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.com/
gp/open-research/policies/accepted-manuscript-terms

1

http://dx.doi.org/10.1007/s43153-023-00422-y
http://dx.doi.org/10.1007/s43153-023-00422-y
https://www.springernature.com/gp/open-research/policies/accepted- manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted- manuscript-terms

Springer Nature 2021 LATEX template

2 Reinforcement learning for controlling a CSTR process

Keywords: Deep Reinforcement Learning, Chemical Process Control, Van de
Vusse’s Reactor, Deep Q-Learning, DDPG, SAC, TD3

1 Introduction

In the chemical industry, the process control strategy has a direct impact on
process safety, use of inputs and energy, production of effluents, number of pro-
cess steps, quality and the value of the final product. The most common control
strategy used in industry today is the Proportional, Integral and Derivative
controller (PID). However, its tuning depends on the degree of linearity of
the process. This degree is a function of the thermo-physical and rheological
properties. The use of PID controllers may not be satisfactory in non-linear
processes.

Another approach used to control complex chemical processes is the model
predictive control (MPC). This controller uses a model to predict the future
behavior of the system. Based on these predictions and an optimization algo-
rithm, it establishes a set of optimal actions. These controllers naturally handle
complex goals, and particularly input, state and time constraints. Depending
on the complexity of the model or the prediction horizon, this algorithm may
have a high computational cost.

Under the umbrella term of Industry 4.0 [1], various computational
intelligence techniques have been proposed as alternatives for processes for sim-
ulating high complexity and a considerable degree of non-linearity. In chemical
reaction processes, these peculiarities occur due to the non-linearity of chemical
kinetics and the possibility of chemical reactions in series and parallel.

One of the most relevant computational intelligence techniques in the con-
trol area is Reinforcement Learning [2]. This technique is grounded in the
operations research area, and can be used to train controllers that optimize
many sequential decision making processes, including chemical plants. In this
context, the process control policy is modeled as a mapping of a set of states
onto a set of actions or action probabilities. The objective of an RL algorithm
is to obtain the policy that maximizes a value function, which is a prediction
of the sums of expected future rewards from a given state.

One of the main advantages of RL controllers over classical controllers is
their adaptability and flexibility. These controllers can operate in complex and
nonlinear systems, explore different actions to find the best control strategy
and adapt to changes in the environment. Additionally, once trained they are
very light in terms of computational load. However, implementing these con-
trollers in process control faces some challenges, such as the relative immaturity
of the technology and the lack of stability assessment studies and methods. [3]

One of the challenges in using Reinforcement Learning is establishing the
reward function. This function must set a balance between optimizing different
process characteristics, such as safety, production and product quality. The
reward function also impacts the convergence of the RL algorithm. The degree

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 3

of complexity of the function can either facilitate convergence, or make it
impossible.

Technological advances in the field of computing allowed the viability and
popularization of Deep-Learning techniques [4]. Thus, a new area of research
involving deep reinforcement learning algorithms opened up new possibilities
for solutions to highly complex and large-dimensional problems [4].

This work aims to train and evaluate reinforcement learning-based con-
trollers for chemical reaction processes. In this evaluation, the performance of
different algorithms in the control of the case study, the Van de Vusse reactor,
were compared. This comparison involved advanced deep reinforcement learn-
ing algorithms like Twin Delayed DDPG and Soft Actor Critic as well as the
ILQR NMPC algorithm[5].

2 Related work

The first reports of applications of Reinforcement Learning in chemical pro-
cesses were neurocontrollers. J.C.Hoskins et al. in 1992, controlled a generic
CSTR reactor with Anderson neural controller [6]. Alex et al. in 2001, obtained
excellent results in the complete control of the (Tennessee Eastman Process)
using the algorithm SANE (Symbiotic Adaptive Neuro-Evolution) [7].

Other works used Approximate Dynamic Programming (ADP) Algorithms
to control reactors and other equipment. In these cases, it was necessary to
use representations such as K-NN, neural networks, RBF, to approximate the
continuous environment. Jong MinLee et al. in 2006, developed controllers for
a simplified model of the Van de Vusse reactor and an MMA polymerization
reactor [8]. Thidarat Tosukhowong et al. in 2009, implemented an ADP-based
algorithm to control a plant consisting of a reactor and a distillation column
with recycle. Due to the model’s high dimensionality, a selection of variables
was necessary [9]. Sudhakar Munusamy et al. and Christian D et al. developed
ADP-based controllers for a PFR (Plug Flow Reactor) [10].

In the area of deep reinforcement learning, some works used Deep Q-
Learning (DQL, [4]) with some modifications for the control of chemical
processes. Zhuang Shao et al. implemented a hybrid DQL with windowing for
a wet flue gas desulfurization (WFGD) system [11]. Soonho Hwangbo et al.
used an MC-DQL for a downstream separation control system in biopharma-
ceutical processes. In this DQL change, the temporal difference learning (TD)
was changed to learning based on the Monte-Carlo algorithm (MC) [12]. Dong-
Hoon Oh et al. used the Advantage Actor-Critic (A2C) algorithm to estimate
the ideal operating conditions of the hydrocracking process. HaeunYoo et al.
proposes to change the learning by temporal differences (TD) of DDPG to the
learning by Monte-Carlo (MC) [13].Yan Ma et al. were successful in controlling
a polymerization reaction using DDPG. In this work, several adaptations to
transform a chemical process control into an RL problem are addressed [14].
Manee et al. studied the calculation of optimal profiles of a semi-batch crys-
tallizer to control mean size and variance using SAC, TD3, A2C, PPO. In this

Springer Nature 2021 LATEX template

4 Reinforcement learning for controlling a CSTR process

work, both off-policy and on-policy algorithms were able to control the mean
size and variance of the crystals. However, it has been shown that on-policy
algorithms need more training episodes to achieve a near-optimal policy [15].
Alhazmi et al. integrated RL with economical MPC to operate chemical reac-
tors in near-optimal conditions in the presence of incompatibility of plants and
models. This structure was studied in ethylene oxidation and demonstrated
superior performance and improved yield in the desired product [16].

Most of these studies of reinforcement learning in chemical processes are
limited to complex models with reduced dimensionality, as is the case of PFR
reactors and polymerization reactions. In the case of high dimensionality, the
state and actions of the environment are usually simplified. It is challenging
to find studies with both high dimensionality and complexity. Another aspect
perceived in these studies is the predominance of the use of off-policy algo-
rithms. These algorithms can find the optimal policy with fewer data and less
training.

This work uses deep reinforcement learning algorithms in the Van de Vusse
Reactor. Although this model still has a relatively low dimensionality, unlike
other works with this reactor, the model was implemented without dimen-
sionality reduction. [8, 17]. The reactor is not isothermal and the variables
manipulated were the reactor and thermal jacket feed rates. These changes
increase fidelity with real chemical processes and make control more difficult.

3 Background

3.1 Reinforcement Learning

A reinforcement learning agent learns to perform certain actions in an environ-
ment, desiring to maximize the sum of future rewards, also called the return.
It does this by exploiting the knowledge learned through repeated attempts.
In a classic reinforcement learning problem, the agent executes the action at
at time t based on the current state of the environment st, and receives feed-
back from the environment in the form of a reward rt+1, and a new state st+1

(Figure 1) [2].

Agent

Environment

State
St

Reward
rt

rt+1
st+1

Action
at

Fig. 1 Workflow of an RL agent

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 5

The state smay be beyond immediate perceptions (sensory measurements).
Representations of these states can be processed versions of original percep-
tions, or they may be complex structures built over time from the sequence
of perceptions [2]. The state signal should summarize past perceptions in
a compact shape, preserving the relevant information. It may require more
than immediate perceptions but certainly less than the complete history of all
perceptions.

A state signal capable of retaining all relevant information has the Markov
property[2]. Due to this property, it is possible to predict the expected next
state and next reward, given the current state and action. This feature allows
predicting the expected future states and rewards from an iterative process [2].

Most reinforcement learning algorithms estimate a function that stores the
expected return of a certain state, called the state value function. The expected
return depends on the actions performed by the agent. Consequently, the state
value function is related to a specific policy [2].

The policy π is a mapping of each state s ∈ S, and action a ∈ A(s), to the
probability π(a|s) of performing an action a when in the state s. The state
value function V π(s) is the expected return starting from s and following the
π policy. It is defined as

V π(s) = E(Rt|st = s) = Eπ(

∞∑
k=0

γkrt+k+1|st = s), (1)

where Eπ(. . .) is the expected value given the agent is following the π policy,
t is the time, and γ is the discount factor of future rewards to avoid infinite
returns in continuous tasks and to set the optimization horizon.

Another way of evaluating the quality of a state and action is through
the action-value function. Qπ(s, a) is the expected return from the state s,
performing the action a and following the policy π thereafter. It is defined as

Qπ(s, a) = E(Rt|st = s, at = a) = Eπ(

∞∑
k=0

γkrt+k+1|st = s, at = a). (2)

The advantage of using an action-value function is that an improved policy
can be immediately derived from it:

π′(s) = argmax
a

Qπ(s, a). (3)

Specific recursive relationships are a fundamental property of the Qπ and
V π functions used in reinforcement learning. For any policy π and any state s,
the following consistency condition holds between the value of s and the value

Springer Nature 2021 LATEX template

6 Reinforcement learning for controlling a CSTR process

of its possible successor states

Qπ(s, a) =
∑
s′

p(s′|s, a)[R(s, a, s′) + γV π(s′)] (4)

V π(s) =
∑
a

π(a|s)Qπ(s).

Where p(s′|s, a) is the probability of the occurrence of the new state s′ given
action a and state s, and R(s, a, s′) is the reward for the transition from s to
s′ taking action a.

This Bellman equation calculates the average of all possibilities, weighting
each one by its probability of occurrence. The value function associated with
the initial state s must equal the (discounted) value of the next expected
state, plus the expected reward on the transition (Equation 5). Solving an RL
problem means finding the policy that provides the greatest long-term returns
[2].

3.2 Algorithms

The reinforcement learning algorithms used in this work were Deep Q-Learning
(DQL) [4, 18], Deep Deterministic Policy Gradient (DDPG) [19, 20], Twin
Delayed DDPG (TD3) [21] and Soft Actor Critic (SAC) [22, 23]. DQL is the
foundational algorithm of the field of deep reinformcent learning, and the other
three are recognized for presenting excellent results in continuous environments
while requiring less samples than competing algorithms.

Deep Q-Learning (DQL) is an off-policy reinforcement learning algorithm
that uses a deep neural network to approximate the Q function. Off-policy
means it can learn from experience gathered by a different policy than that
which is currently being followed by the agent. Specifically, it can learn from
experience gathered by previous policies, which is stored in a replay memory.
DQL creates a neural network Q(s, a; w) that approximates the ideal Q∗

function value by updating the synaptic weights w using batches of experience
(st, at, rt+1, st+1) drawn from this replay memory, using the Q-learning target

Q(st, at)← rt+1 + γmax
a′

Q(st+1, a
′). (5)

Such networks can automatically extract implicit characteristics of the
problem, in addition to being able to work with continuous spaces of high
dimensionality. However, it is only applicable to discrete actions [4, 18].

Deep Deterministic Policy Gradient (DDPG) is an off-policy and continu-
ous action reinforcement learning algorithm that combines Deep Q-Learning
with an explicit representation of the deterministic policy µ(s; θ) with synap-
tic weights θ, called an actor. The DDPG consists of an actor and a critic.
The actor is the neural network that represents the policy. It receives a certain
state and responds with an exact action. The critic is the network that repre-
sents the action-value function Q∗(s, a). It takes state and action as input and

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 7

returns the expected return. The critic is estimated in the same way as DQL,
but the actor is optimized using the deterministic policy gradient

∇θQ(s, µ(s; θ); w) = ∇aQ(s, a; w)|a=µ(s; θ)∇θµ(s; θ), (6)

which shifts the policy towards higher Q values[19, 20]. Note that, although
the optimized policy is deterministic, the behavior policy π(a|s; θ) = µ(s; θ)+
N (0, σ) is stochastic with exploration noise σ to ensure sufficient exploration
during training.

Twin Delayed DDPG (TD3) is an extension of DDPG combining contin-
uous policy gradient, Actor-Critic, and Double Deep Q-Learning methods.
While DDPG is capable of achieving great performance, it is often fragile in
terms of hyperparameters and other tuning categories. A common fault of
DDPG is that the learned function Q starts to drastically overestimate the Q
values. This behavior leads to policy breaking because it exploits errors in the
Q function. The TD3 adds three improvements to solve the problems reported
above. The first improvement is the use of two critic networks. It uses Clipped
Double-Q Learning which considers the smallest value of the two critic net-
works for calculating the update target. The second is to delay updates to
the policy. This strategy results in greater stability of the actor network and
reduces errors before being used in the Q network. The last is Target Policy
Smoothing. This technique adds random noise to the action used to calculate
the target, thereby making the estimate more robust.[21].

Soft Actor Critic (SAC) is another actor-critic algorithm, based on the
maximum entropy reinforcement learning framework. The actor aims to maxi-
mize both reward and entropy. Due to entropy maximization, the algorithm is
encouraged to explore the environment more widely, while giving up unpromis-
ing paths. It can recognize several near-optimal modes of behavior. As opposed
to DDPG and TD3, which use a policy mean µ(s; θ) with added noise, SAC
maintains an explicitly stochastic policy network. In problems where several
actions appear equally optimal, the policy will assign an equal mass of prob-
ability to these actions. In this way, collapse is avoided due to the repeated
selection of a particular action that can exploit some inconsistency of the
approximate Q function [22, 23].

ILQR (Iterative Linear Quadratic Regulator, [5]) is an NMPC (Non-
linear Model Predictive Control) algorithm derived from Differential Dynamic
Programming[24] that uses a model to predict the future behavior of the sys-
tem in a finite time window, the horizon. Based on these predictions and the
current state of the system, the optimal control inputs about an objective
system control function

C =

n−1∑
k=0

(
x̄T
kQx̄k + ūT

kRūk

)
+ x̄T

nQx̄n (7)

Springer Nature 2021 LATEX template

8 Reinforcement learning for controlling a CSTR process

are calculated, and the first control action in the sequence is applied. In
Equation 7, n is the length of the horizon, x̄ and ū are the differences between
the states and actions and their respective setpoints/desired values, Q is the
state cost matrix and R is the action cost matrix. ILQR iteratively solves
the dynamic programming problem given by linearizing the system along the
current trajectory (forward pass) and maximizing the reward along it using a
quadratic model of the value function using second order Taylor expansion
(backward pass). For each time step in the predicted sequence, the applied
control is modified in the direction of maximizing this quadratic function.

3.3 Case Study: Van de Vusse Reactor

In Van de Vusse kinetics, cyclopentenol(B) is produced from cyclopenta-
diene, with the formation of cyclopentanediol(C) and dicyclopentadiene(D)
by-products, as shown in Figure 2 [25].

Fig. 2 Van de Vusse chemical reaction

The relationship between the kinetic constants k1, k2, k3 and temperature
are regulated by the Arrhenius equation

ki(T) = ki0.exp
(−EAi

R.T

)
. (8)

Where ki0 is the kinetic constant at the reference temperature, EAi is the
activation energy, T is the temperature, and R is the universal gas constant.
As described in more detail by Engell & Klatt in 1993 [26], the reaction takes
place in a jacketed CSTR reactor, due to the exothermic nature of the reaction
(Figure 3).

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 9

CI

TI
TI

Tkin

Fin
CAin, Tin

Fkin

Tk

CA, CB, Tr

Fig. 3 CSTR reactor with Van de Vusse kinetics

Where CA is the molar concentration of compound A (cyclopentadiene),
CB is the molar concentration of compound B (cyclopentenol), Fin is the
reactor feed rate, Tin is the temperature of the reactor feed stream, CAin is
the concentration of A in the feed, Fkin is the thermal jacket feed flow, Tkin

is the temperature of the feed stream of the jacket, Vr is the reactor volume,
Tr is the reactor temperature, and Tk is the thermal jacket temperature.

The dynamics of the system are described by the differential equations,
resulting from the mass and energy balances of the reactor and the cooling
jacket (Equation 9). To simulate the system, these equations are numerically
integrated.

dCA

dt
=

Fin

Vr
[CAin − CA]− k1(T)CA − k3(T)C

2
A

dCB

dt
=

Fin

Vr
[CBin − CB] + k1(T)CA − k2(T)CB

dTr

dt
=

Fin

Vr
[Tin − Tr] +

kw.Ar

ρCpVr
[Tk − Tr] +

1

ρCp
[k1CA∆H1 + k1CB∆H2 + k3C

2
A∆H3]

dTk

dt
=

Fkin

Vk
.[Tkin − Tk]−

kw.Ar

mk.Cpk

.[Tk − Tr]

(9)
Tables 1 and 2 contain the kinetic parameters of the reaction and properties

of the reactor and jacket provided by Engell & Klatt (1993) [26]. These data
served as a basis for several other studies on this reactor [27, 28] . Some
assumptions underlying the model are constant density, heat capacity, and
level along the reactor.

Springer Nature 2021 LATEX template

10 Reinforcement learning for controlling a CSTR process

Table 1 Physicochemical properties and dimensions of the reactor.

Parameters Symbols Values Units
Solution density ρ 0.9342 kg.L−1

Thermal capacity Cp 3.01 kJ.kg−1.K−1

Thermal conductivity Kw 4032 kJ.m−1.h−1K−1

Reactor heat exchange area Ar 0.215 m2

reactor volume Vr 10 L
Thermal jacket mass mk 5 kg
Thermal capacity of the jacket Cpk 2.0 kJ.kg−1.K−1

Table 2 Reaction kinetic parameters.

Reaction ki0 EAi/R ∆Hri

A → B 1.287 x 1012 h−1 -9758.3 K 4,2 kJ.mol−1

B → C 1.287 x 1012 h−1 -9758.3 K -11 kJ.mol−1

2A → D 9.043 x 1012 L.mol−1h−1 -8560 K -41.85 kJ.mol−1

The mapping of the CB at a steady state as a function of feed flow and tem-
perature is shown in Figure 4.a. The longitudinal and transverse profiles for
two specific temperatures and flows are found in Figures 4.b and 4.c, respec-
tively. An important feature of this process is gain inversion. This feature is
revealed when the same steady-state value for the controlled variable (CB) is
obtained for different values of the manipulated variable (Fin). This behavior
makes process control even more challenging since disturbances from different
sources can cause the process to lose stability.

Fig. 4 The steady-states of the Van de Vusse Reactor in terms of CB , Fin, Tr [28]

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 11

The non-linear profile is easily evidenced at the 380 K curve in Figure 4.b,
where the curve is increasing up to the magnitude of 100 L/h but decreases
for higher flows. The point where this behavior change occurs is called the
inversion point. This aspect is problematic for proportional controllers because
the same action can have opposite results depending on the ambient state. For
example, an increase in flow causes an increase in the concentration of B in
the region of low flow. However, this same action causes a decrease of CB in
the high flow region.

4 Methodology and Simulations

The Van de Vusse reactor was studied by simulation. It was numerically inte-
grated with the differential equations that describe the process.(Equation 9).
This process was implemented in the Generic Reinforcement Learning Library
1 (GRL).

The reinforcement learning controller developed for this process is multi-
variable (5 observed variables and 2 acting variables). The concentrations of
compounds A and B, the setpoint of the concentration of B, and the tem-
perature of the reactor and the thermal jacket were considered as observed
variables. The manipulated variables were the reactor and thermal jacket feed
rates, directly set by the RL actions. The reward function is given as

r(t) = WFin
.
Fin(t)

700
− (1−WFin

). | SpCB
(t)− CB(t) |, (10)

where r(t) is the reward per transition, SpCB
(t) is the setpoint of the

concentration of compound B, CB(t) is the concentration of B in the output
stream, Fin(t) is the flow rate at the reactor feed, and WFin is the influence
of the flow rate on the reward. The inclusion of WFin allows the agent to
balance between maximizing production and product quality. The objective is
to obtain the greatest amount of product at the specified concentration of B.

In the NMPC controller, the state variables x were the concentrations of
compounds A and B, and the temperature of the reactor and the thermal
jacket. The prediction horizon was 50 timesteps, and all states were directly
measured. The desired action values were set to 700 L/min and 0 L/min for
the reactor and thermal jacket flows. The elements of the objective function
of the NMPC are presented in Equation 11. These elements were designed to
maintain similarity with the RL reward function, but following the charac-
teristics of a quadratic MPC objective function. Note that the weight for the
thermal jacket flow is very low, and only serves to stabilize the algorithm

Q = diag(0, 1−WFin , 0, 0)

1https://github.com/wcaarls/grl

Springer Nature 2021 LATEX template

12 Reinforcement learning for controlling a CSTR process

Table 3 Operating conditions. Fin and Fink are manipulated variables and have no
initial condition.

ID Xtr
0 Xte

0 Operation Range unit
CA 3.3-5.5 5.1 3.3-5.5 mol/L
CB 0.0-1.0 0.0 3.3-5.5 mol/L
T 285-450 380 285-450 K
Tk 285-450 380 285-450 K
Fin - - 0.0-700 L/h
Fink - - 0.0-400 L/h

R = diag(WFin ·
Fin(t)

700
, 10−10) (11)

The initial conditions of the reactor (X0) and the range of each process
variable are found in Table 3. The training episodes were randomly initial-
ized respecting the range described in the column Xtr

0 . During these episodes,
the setpoint value and setpoint change time were randomly altered. The test
episodes were initialized with the values in the column Xte

0 and followed
predefined setpoint changes.

The simulations for the case study of the CSTR reactor with Van de Vusse
kinetics were designed to evaluate the stability and robustness of the reinforce-
ment learning controllers. The first set of simulations consists of the controller’s
response to the change in the setpoint of compound B (SpCB

). In the test
episodes, the same initial operating conditions were maintained and SpCB

was
changed from 0.9 to 1.1 mol/L at 16 minutes, according to Equation 12.

SpCB
(t) =

{
0.9 if t ≤ 16 min
1.1 if t > 16 min

(12)

The second set of simulations consists of the gain inversion point test. In
this experiment, the setpoint changes to the region around the inversion point.
At 12 and a half minutes of simulation, SpCB

increases from 1.0 to 1.2 mol/L.
At 25 minutes of simulation, SpCB

is reduced to a stable value of 0.9 mol/L
(Equation 13).

SpCB
(t) =

 1.0 if t < 12.5 min
1.2 if 12.5 ≤ t ≤ 25 min
0.9 if t > 25 min

(13)

The SpCB
= 1.2 mol/L cannot be reached in a steady-state, as shown in

Figure 4. Therefore, the system will alternate between a positive and negative
gain during the period between 12.5 and 25 minutes of the simulation. This
scenario is challenging for any controller due to these gain changes, which can
cause a total lack of control of the process.

Table 4 summarizes the simulations referring to experiments 1 and 2 for
the different reinforcement learning algorithms. Each simulation contains 900

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 13

Table 4 Experiment 1 and 2 simulations.

ID Alg. WFin
Learning Rate Activation

1 DQL 0.1 0.001 relu-relu-linear
2 DDPG 0.1 0.001 e 0.0001 relu-relu-tanh
3 SAC 0.1 0.001 e 0.0001 relu-relu-tanh
4 TD3 0.1 0.001 e 0.0001 relu-relu-tanh

episodes of 35 minutes and was repeated 5 times. The RL training was per-
formed with γ of 0.994, update factor of target network weights (τ) was 0.001,
controller time step was 30s and neural networks with two fully connect layers
containing 400 and 300 neurons, respectively. In DQL, the algorithm actions
were discretized in 11 intervals per manipulated variable, distributed evenly
over the entire range of flows.

Although the return is a performance metric, it is not suitable for com-
paring RL controllers with different environment and reward functions. Apart
from the reactor flow, we use the Integral Absolute Error (IAE) to compare
the performance between different controllers (Equation 14).

IAE(t) =

∫ t

0

| spCB
(t)− CB(t) | dt (14)

5 Results and discussions

Experiment 1 consists of the controller’s response to the change in the setpoint
of compound B (SpCB

) after 16 minutes of simulation, according to Equation
12. The second experiment of the Van de Vusse Reactor is the gain inversion
point test, where the setpoint is changed to be in the region around the inver-
sion point at 12.5 minutes of simulation (Equation 13). The training graphs
of the reinforcement learning algorithms are shown in Figure 5.

300 600 900
−300

−200

−100

0

100

300 600 900
−300

−200

−100

0

100

TD3 SAC DQL DDPG

Episodes Episodes

C
um

ul
at

iv
e

Re
w

ar
d

(a) (b)

Fig. 5 Learning RL algorithms (a) Experiment 1 (b) Experiment 2;

Springer Nature 2021 LATEX template

14 Reinforcement learning for controlling a CSTR process

Analyzing Figure 5, we can see the difference in difficulty between the
two experiments. In experiment 1, the RL algorithms obtained faster learning
and with less variation, while in experiment 2 they presented a noisier and a
little slower learning. For both experiments, the DQL, DDPG, TD3 algorithms
required approximately 150 training episodes to converge to a policy with
similar returns. SAC presented a slower learning and a lower return for a total
of 900 training episodes. Probably, with a greater number of episodes, it would
catch up with the other algorithms.

5.1 Experiment 1: Setpoint change

The performance of the algorithms during the test episode for the feed flow
weight WFIN = 0.1 is shown in Figure 6.

0 10 20 30

−8

−4

0

0 10 20 30
0.6

0.7

0.8

0.9

1

1.1

1.2

0 10 20 30

400

600

0 10 20 30
0

100

200

300

400

0 10 20 30
395

400

405

410

0 10 20 30

360

380

400

SETPOINT DDPG DQL SAC TD3 NMPC

Time (min) Time (min)

Re
w

ar
d

C
B
 (

m
ol

/L
)

Re
ac

to
r

Fl
ow

(L

/m
in

)

Ja
ck

et
 F

lo
w

 (
L/

m
in

)

Re
ac

to
r

Te
m

pe
ra

tu
re

 (
K
)

Ja
ck

et
 T

em
pe

ra
tu

re
 (

K
)

(a) (b)

(c) (d)

(e) (f)

Loading [MathJax]/extensions/MathMenu.js

Fig. 6 Simulation results for WFIN = 0.1 a) Rewards per step; b) Concentration of B
(controlled variable); c) Reactor feed flow (manipulated variable); d) Thermal Jacket supply
flow (manipulated variable); e) Reactor Temperature; f) Thermal Jacket Temperature;

For the simulations of WFIN = 0.1, the learning algorithms presented sim-
ilar performances and operating points. The DDPG algorithm presented an

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 15

IAE of 41, DQL of 40, SAC of 43, TD3 of 42 and NMPC of 33 (Figure 6.b).
The SAC controller showed a small offset of 0.01 to the setpoint of 1.1 mol/L.
This offset can probably be eliminated with policy improvement through more
training episodes. The SAC had a flow of 647 L/min and a temperature of
406 K. The DDPG, TD3, DQL the temperature was 410 K and a flow of 700
L/min, the maximum stipulated by the model. The NMPC presented an oper-
ation similar to RL controllers. It maintained the reactor’s feed flow rate at
700 L/min for most of the time, only reducing it during the setpoint change.
(Figure 6.c.d).

The high operating point reached by the RL algorithms can be a desir-
able aspect due to production maximization. When changing the setpoint, the
DDPG and TD3 maintained the maximum feed flow of 700 L/min, while the
DQL temporarily reduced the flow by 210 L/min and the SAC reduced it
by 368 L/min (Figures 6.c.d). Maximizing the feed throughput increased the
response time for all tested deep reinforcement learning algorithms (Figure
6.b). In the thermal jacket, all algorithms performed similar actions. The
decrease in the flow of the cooling fluid will increase the temperature of the
thermal jacket and thus decrease the thermal exchange with the reactor. Con-
sequently, the reactor temperature will increase, due to the Arrhenius equation,
there will be an increase in the kinetic rate and the concentration of CB. The
DDPG, DQL and NMPC presented a damped oscillatory action in the initial
overshoot (Figure 6.d).

One of the advantages of the multivariable controller is the possibility of
seeing different ways of controlling a process. This is a consequence of its
ability to manipulate several process variables in an integrated way. CB is
modified by both the feed rate (Fin) and the temperature (T). By adding the
influence of flow on the reward function (WFIN=0.1), the agent’s preference
for acting on the thermal jacket can be seen. Unexpectedly, this addition made
the controller more robust and stable.

5.2 Experiment 2: Inversion Point

The performance of the algorithms during the test episode for the feed flow
weight WFIN = 0.1 is shown in Figure 7.

Springer Nature 2021 LATEX template

16 Reinforcement learning for controlling a CSTR process

0 10 20 30

−12

−8

−4

0

4

0 10 20 30
0.7

0.8

0.9

1

1.1

1.2

1.3

0 10 20 30
200

400

600

0 10 20 30
0

100

200

300

400

0 10 20 30
395

400

405

410

0 10 20 30

360

380

400

SETPOINT DDPG DQL SAC TD3 NMPC

Time (min) Time (min)

Re
w

ar
d

C
B
 (

m
ol

/L
)

Re
ac

to
r

Fl
ow

(L

/m
in

)

Ja
ck

et
 F

lo
w

 (
L/

m
in

)

Re
ac

to
r

Te
m

pe
ra

tu
re

 (
K
)

Ja
ck

et
 T

em
pe

ra
tu

re
 (

K
)

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Simulation results for WFIN = 0.1 a) Rewards per step; b) Concentration of B
(controlled variable); c) Reactor feed flow (manipulated variable); d) Thermal Jacket supply
flow (manipulated variable); e) Reactor Temperature; f) Thermal Jacket Temperature;

The DDPG algorithm presented an IAE of 122, DQL of 100, SAC of 108,
TD3 of 123 and NMPC of 107 (Figure 7.b).The RL algorithms and NMPC
controller were able to pass the inversion point test with excellence. In this
test, the most important thing is the ability of the controller to manage the
process after reaching the inversion point. The TD3 and DDPG algorithms
kept the reactor feed flow at the maximum value. DQL momentarily reduced
the flow to 630 L/min while changing the setpoint. The SAC presented an
operating point with a lower throughput than the other algorithms (Figure
7.c). The performance of the NMPC fell between TD3 and SAC. Regarding the
concentration of B (CB), the values obtained by the NMPC were consistently
lower than those of SAC and higher than those of TD3 during setpoint changes.
However, this relationship was reversed in the reactor feed flow rate (FIN). The
NMPC exhibited higher flow rates than SAC and lower flow rates than TD3
during setpoint changes.Using this relationship in the context of B production,
it is advantageous to maximize the reactor flow rate at 700 L/min. However,
this resulted in a slight delay in the response of the controllers. The faster

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 17

controllers were those that simultaneously modified the feed flow rates of both
the reactor and the jacket.

Performance on the thermal jacket feed flow was similar for all tested RL
algorithms. Only DQL and TD3 showed oscillatory actions, mainly at the
setpoint of 0.9 mol/L, while DDPG and SAC showed continuous and precise
actions (Figure 7.d)

6 Conclusion

In this work, the performance of RL controllers and NMPC for the CSTR
reactor with Van de Vusse kinetics was evaluated. This process is a well-known
chemical process control benchmark. As described in the 3 chapter, it has
characteristics that make its control difficult. Among these characteristics are
gain inversion and a multiplicity of inputs.

Most multivariable Reinforcement Learning (RL) controllers demonstrated
excellent performance both in setpoint change and operation near the inversion
point. In the former, RL algorithms showed similar performances among them-
selves. However, the Nonlinear Model Predictive Control (NMPC) exhibited a
20% lower Integral Absolute Error (IAE) compared to RL algorithms, at the
cost of reduced flow than some RL algorithms. Among the RL algorithms, Soft
Actor-Critic (SAC) showed the slowest convergence and achieved the weakest
performance, falling 2% below the second-worst performer. In the latter, both
RL controllers and NMPC were able to stabilize the process after reaching the
inversion point, with no significant differences in IAE values. It is worth noting
the main advantage of RL algorithms over NMPCs, which is computational
cost. While NMPCs need to perform an optimization process at each itera-
tion to determine the best controller action, RL algorithms have these actions
stored in the Q-function or policy, significantly reducing computational cost.

Using a reward function that also values flow rate, the RL controllers com-
pleted the tasks with both stability and operational error minimization. A
flow rate weight of 10% (WFin = 0.1) was sufficient to guarantee both a small
influence on the error and the maximization of the reactor production.

Declarations

Conflict of interest: The authors declare no conflict of interest.

References

[1] Nian, R., Liu, J., Huang, B.: A review on reinforcement learning:
Introduction and applications in industrial process control. Computers
e Chemical Engineering 139, 106886 (2020). https://doi.org/10.1016/j.
compchemeng.2020.106886

[2] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA (2018)

https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.1016/j.compchemeng.2020.106886

Springer Nature 2021 LATEX template

18 Reinforcement learning for controlling a CSTR process

[3] Shin, J., Badgwell, T.A., Liu, K.-H., Lee, J.H.: Reinforcement learning
– overview of recent progress and implications for process control. Com-
puters & Chemical Engineering 127, 282–294 (2019). https://doi.org/10.
1016/j.compchemeng.2019.05.029

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.: Playing Atari with Deep Reinforcement
Learning

[5] Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex
behaviors through online trajectory optimization. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 4906–
4913 (2012). https://doi.org/10.1109/IROS.2012.6386025

[6] Vitthal, R., Rao, C.D.: Process control via artificial neural net-
works and learning automata, vol. 16, pp. 329–334. IEEE, ???
(1995). https://doi.org/10.1109/IACC.1995.465819. http://ieeexplore.
ieee.org/document/465819/

[7] Alex, Alex, Aldrich, C., Aldrich, C.: Plant-wide neurocontrol of the
tennessee eastman challenge process using evolutionary reinforcement
learning. Proceedings of the Third International Conference on Intelligent
Processing and Manufacturing of Materials (2001)

[8] Lee, J.M., Kaisare, N.S., Lee, J.H.: Choice of approximator and design of
penalty function for an approximate dynamic programming based control
approach. Journal of Process Control 16, 135–156 (2006). https://doi.
org/10.1016/j.jprocont.2005.04.010

[9] Tosukhowong, T., Lee, J.H.: Approximate dpamic programming based
optimal control applied to an integrated plant with a reactor and a
distillation column with recycle. AIChE Journal 55, 919–930 (2009).
https://doi.org/10.1002/aic.11805

[10] Hubbs, C.D., Li, C., Sahinidis, N.V., Grossmann, I.E., Wassick, J.M.: A
deep reinforcement learning approach for chemical production scheduling.
Computers e Chemical Engineering 141, 106982 (2020). https://doi.org/
10.1016/j.compchemeng.2020.106982

[11] Shao, Z., Si, F., Kudenko, D., Wang, P., Tong, X.: Predictive scheduling
of wet flue gas desulfurization system based on reinforcement learning.
Computers and Chemical Engineering 141, 107000 (2020). https://doi.
org/10.1016/j.compchemeng.2020.107000

[12] Hwangbo, S., Sin, G.: Design of control framework based on deep rein-
forcement learning and monte-carlo sampling in downstream separation.
Computers and Chemical Engineering 140, 106910 (2020). https://doi.

https://doi.org/10.1016/j.compchemeng.2019.05.029
https://doi.org/10.1016/j.compchemeng.2019.05.029
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1109/IACC.1995.465819
http://ieeexplore.ieee.org/document/465819/
http://ieeexplore.ieee.org/document/465819/
https://doi.org/10.1016/j.jprocont.2005.04.010
https://doi.org/10.1016/j.jprocont.2005.04.010
https://doi.org/10.1002/aic.11805
https://doi.org/10.1016/j.compchemeng.2020.106982
https://doi.org/10.1016/j.compchemeng.2020.106982
https://doi.org/10.1016/j.compchemeng.2020.107000
https://doi.org/10.1016/j.compchemeng.2020.107000
https://doi.org/10.1016/j.compchemeng.2020.106910
https://doi.org/10.1016/j.compchemeng.2020.106910

Springer Nature 2021 LATEX template

Reinforcement learning for controlling a CSTR process 19

org/10.1016/j.compchemeng.2020.106910

[13] Yoo, H., Kim, B., Kim, J.W., Lee, J.H.: Reinforcement learning based
optimal control of batch processes using monte-carlo deep deterministic
policy gradient with phase segmentation. Computers and Chemical Engi-
neering 144, 107133 (2021). https://doi.org/10.1016/j.compchemeng.
2020.107133

[14] Ma, Y., Zhu, W., Benton, M.G., Romagnoli, J.: Continuous control of a
polymerization system with deep reinforcement learning. Journal of Pro-
cess Control 75, 40–47 (2019). https://doi.org/10.1016/j.jprocont.2018.
11.004

[15] Manee, V., Baratti, R., Romagnoli, J.A.: Optimal strategies to control
particle size and variance in antisolvent crystallization operations using
deep rl. Chemical Engineering Transactions 86, 943–948 (2021). https:
//doi.org/10.3303/CET2186158

[16] Alhazmi, K., Albalawi, F., Sarathy, S.M.: A reinforcement learning-based
economic model predictive control framework for autonomous operation
of chemical reactors. Chemical Engineering Journal 428, 130993 (2022).
https://doi.org/10.1016/j.cej.2021.130993

[17] Cassol, G.O., Campos, G.V.K., Thomaz, D.M., Capron, B.D.O.,
Secchi, A.R.: Reinforcement learning applied to process con-
trol: A van der vusse reactor case study. In: Eden, M.R.,
Ierapetritou, M.G., Towler, G.P. (eds.) 13th International Sym-
posium on Process Systems Engineering (PSE 2018). Computer
Aided Chemical Engineering, vol. 44, pp. 553–558. Elsevier, ???
(2018). https://doi.org/10.1016/B978-0-444-64241-7.50087-2. https:
//www.sciencedirect.com/science/article/pii/B9780444642417500872

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.,
Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep
reinforcement learning. Nature 518, 529–533 (2015). https://doi.org/10.
1038/nature14236

[19] Silver, D., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Determin-
istic Policy Gradient Algorithms

[20] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D.: Continuous control with deep reinforcement learning
(2015)

[21] Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation

https://doi.org/10.1016/j.compchemeng.2020.106910
https://doi.org/10.1016/j.compchemeng.2020.106910
https://doi.org/10.1016/j.compchemeng.2020.107133
https://doi.org/10.1016/j.compchemeng.2020.107133
https://doi.org/10.1016/j.jprocont.2018.11.004
https://doi.org/10.1016/j.jprocont.2018.11.004
https://doi.org/10.3303/CET2186158
https://doi.org/10.3303/CET2186158
https://doi.org/10.1016/j.cej.2021.130993
https://doi.org/10.1016/B978-0-444-64241-7.50087-2
https://www.sciencedirect.com/science/article/pii/B9780444642417500872
https://www.sciencedirect.com/science/article/pii/B9780444642417500872
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236

Springer Nature 2021 LATEX template

20 Reinforcement learning for controlling a CSTR process

error in actor-critic methods (2018)

[22] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor
(2018)

[23] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J.,
Kumar, V., Zhu, H., Gupta, A., Abbeel, P., Levine, S.: Soft actor-critic
algorithms and applications (2018)

[24] Mayne, D.H., Jacobson, D.Q.: Differential Dynamic Programming. Amer-
ican Elsevier Pub. Co., ??? (1970)

[25] Vusse., J.G.: Plug flow type reactor versus tank reactor 19, 994–997
(1993)

[26] Engell, S., Klatt, K.-U.: Nonlinear control of a non-minimum-phase cstr,
2941–2945 (1993). https://doi.org/10.23919/ACC.1993.4793439

[27] Montanheiro, C.E.: Estudo de um controlador preditivo não linear mul-
tivariável baseado em redes neuronais. Master’s thesis, Universidade
Federal Do Rio de Janeiro, Rio de Janeiro (2014)

[28] Luz, E.M.L.: Desenvolvimento de controladores inteligenes para reator
van de vusse. Master’s thesis, Pontif́ıcia Universidade Católica do Rio de
Janeiro, Rio de Janeiro (2018)

https://doi.org/10.23919/ACC.1993.4793439

	Introduction
	Related work
	Background
	Reinforcement Learning
	Algorithms
	Case Study: Van de Vusse Reactor

	Methodology and Simulations
	Results and discussions
	Experiment 1: Setpoint change
	Experiment 2: Inversion Point

	Conclusion
	Declarations

