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Abstra ct

Developing embedded parallel image processing appli-

cations is usually a very hardware-dependent process, re-

q uiring deep knowledge of the processors used. Further-

more, if the chosen hardware does not meet the req uire-

ments, the application must be rewritten for a new platform.

We wish to avoid these problems by encapsulating the par-

allelism.

We have proposed the use of algorithmic skeletons [3 ]

to express the data parallelism inherent to low-level image

processing. H owever, since different operations run best on

different kinds of processors, we need to exploit task paral-

lelism as well.

This paper describes our asynchronous remote proce-

dure call (RPC) system, optimized for low-memory and

sparsely connected systems such as smart cameras. It uses

a futures[10 ]-like model to present a normal imperative C-

interface to the user in which the skeleton calls are implic-

itly parallelized and pipelined.

1 Intro ductio n

As processors are becoming faster, smaller, cheaper, and

more efficient, new opportunities arise to integrate them

into a wide range of devices. However, since there are so

many different applications, there is no single processor that

meets all the requirements of every one. The SMARTCAM

[6] project investigates how an application-specific proces-

sor can be generated for the specific field of intelligent cam-

eras, using design space exploration.

The processing done on an intelligent camera has very

specific characteristics. On the one hand, low-level image

processing operations such as interpolation, segmentation

and edge enhancement are local, regular, and require vast

amounts of bandwidth. On the other hand, high-level op-

erations like classification, path planning, and control may

be irregular while typically consuming less bandwidth. The

architecture template on which the design space exploration

is based therefore contains data-parallel (SIMD) as well as

instruction-parallel (ILP) processors.

One of the main goals of the project is keeping the sys-

tem easy to program. This means that one single program

should map to a wide range of configurations of a wide

range of processors. It also means that the application de-

veloper shouldn’t have to learn a parallel programming lan-

guage. The solution presented below is based on using al-

gorithmic skeletons to exploit data parallelism within each

operation, while a form of asynchronous RPC allows the

operations to run concurrently.

The structure of this paper is as follows: section 2 reviews

some related work. Sections 3 and 4 describe our pro-

gramming environment and some optimizations. Section 5

presents some results from our prototype, and finally sec-

tion 6 draws conclusions and points to future work.

2 R ela ted wo rk

Programming environments for image and signal pro-

cessing applications are widely ranged. Tightly coupled

systems usually have parallel extensions to a sequential lan-

guage, like Celoxica’s Handel-C [2] for FPGA program-

ming, or NEC’s 1DC [7] for their IMAP SIMD arrays.

More loosely coupled systems usually work with the con-

cept of a task or kernel, and differ in how these tasks are

programmed and composed.

Process networks such as used by YAPI [4] allow much

freedom in specifying the tasks, but require a static con-

nection network between them. StreamC/KernelC [8], de-

veloped for Imagine, reduces the allowed syntax within a

kernel, but makes the interconnections dynamic by using

streams. Their current implementation doesn’t support task

parallelism, however. EASY-PIPE [9] does, but requires a

batch of tasks to be explicitly compiled and dispatched by

the user. Their main contribution is the use of algorithmic

skeletons to make programming the tasks easier. Finally,

Seinstra [11] allows no user specification of the tasks, in-

stead relying on an existing image processing library. It is

also limited to data parallelism, but these restrictions allow

it to be more transparent to the user, presenting a purely

sequential model.

Futures were introduced in the MultiLisp [5] language

for shared-memory multiprocessors. Requesting a future

spawns a thread to calculate the value, while immediately
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retu rning to the c aller, whic h only bloc ks when it tries to

ac c ess it. O nc e the c alc u lation is c omp lete, the fu tu re is

overwritten by the c alc u lated valu e. B atc hed fu tu res [1 0 ]

ap p ly this c onc ep t to R PC, bu t with the intent to redu c e the

amou nt of R PC c alls by sending them in batc hes that may

referenc e eac h other’s resu lts.

3 Pro gra mming

O u r p rog ramming environment is based on C, to p rovide

an easy mig ration p ath. In p rinc ip le, it is p ossible (althou g h

slow) to write a p lain C p rog ram and ru n it on ou r system.

In order to exp loit c onc u rrenc y, thou g h, it is nec essary to

divide the p rog ram into a nu mber of imag e p roc essing op -

erations, and to ap p ly these u sing fu nc tion c alls. Parts of the

p rog ram whic h c annot easily be c onverted c an be left alone

u nless the sp eedu p is absolu tely nec essary.

The main p rog ram, whic h c alls the op erations and in-

c lu des the u nc onverted c ode, is ru n on a control p roce ssor,

while the imag e p roc essing op erations themselves are ru n

on the cop roce ssors that are available in the system (the

c ontrol p roc essor itself may also ac t as a c op roc essor). O nly

this main p rog ram c an make u se of g lobal variables; be-

c au se of the distribu ted natu re of the c op roc essor memory,

all data to and from the imag e p roc essing op erations mu st

be p assed u sing p arameters.

3.1 With in-op eration p arallelism

The main sou rc e of p arallelism in imag e p roc essing is

the loc ality of p ixel-based op erations. These low-level op -

erations referenc e only a small neig hborhood, and as su c h

c an be c omp u ted mostly in p arallel. A nother examp le is

objec t-based p arallelism, where a c ertain nu mber of p ossi-

ble objec ts or reg ions-of-interest mu st be p roc essed. B oth

c ases refer to d ata p aralle lism, where the same op eration

is exec u ted on different data (all p ixels in one c ase, objec t

p ixels or objec ts in the other).

D ata p arallel imag e p roc essing op erations map p artic u -

larly well on linear S IM D arrays (L PA s). H owever, sinc e

we don’t want the ap p lic ation develop er to write a p arallel

p rog ram, we need another way to allow him to sp ec ify the

amou nt of p arallelism p resent in his op erations. For this

p u rp ose, we u se alg orith mic ske le tons. These are te mp late s

of a c ertain c omp u tational fl ow that do not sp ec ify the ac tu al

op eration, and c an be thou g ht of as hig her-order fu nc tions,

rep eatedly c alling an instantiation fu nction for every c om-

p u tation. Take a very simp le binariz ation:

fo r (y=0; y<HEIGHT; y+ + )

fo r (x=0; x<WIDTH; x+ + )

ou t[y][x] = (in[y][x]>128);

U sing a hig her-order fu nc tion, P ix e lTo P ix e lO p , we c an

sep arate the stru c tu re from the c omp u tation. P ix e lTo P ix -

e lO p will imp lement the loop s, c alling b ina riz e every iter-

ation:

int b ina riz e (int v alu e )

re tu rn (v alu e >128);

vo id P ix e lTo P ix e lO p (int (*o p )(int),

int in[HEIGHT][WIDTH], int ou t[HEIGHT][WIDTH])

fo r (y=0; y<HEIGHT; y+ + )

fo r (x=0; x<WIDTH; x+ + )

ou t[y][x] = o p (in[y][x]);

P ix e lTo P ix e lO p (b ina riz e , in, ou t);

N ote that imp lementing P ix e lTo P ix e lO p c olu mn-wise

instead of row-wise – by interc hang ing the loop s – does not

c hang e the resu lt, bec au se there is no way for o p to refer-

enc e earlier resu lts (side effec ts are not allowed). It c an be

said that by sp ec ifying the inp u ts and ou tp u ts of the instanti-

ation fu nc tion, the skeleton c harac teriz es the available p ar-

allelism. S o, by c hoosing a skeleton, the p rog rammer makes

a statement abou t the p arallelism in his op eration, while not

sp ec ifying how this shou ld be exp loited. This freedom will

allow u s to op timally map the op eration to different arc hi-

tec tu res.

A nother benefi t is that the imag e p roc essing library nor-

mally ship p ed with D S Ps and other imag e p roc essors is re-

p lac ed by a skeleton library, whic h is more g eneral and thu s

less in need of c onstant u p dates.

O f c ou rse, not all op erations c an be data-p aralleliz ed as

easily as p ixel op erations. M ore irreg u lar op erations p lac e

inc reasing demands on the au tonomy and interc onnec tion

of the p roc essing elements. For examp le, for effi c ient im-

p lementation, loc al neig hborhood op erations are straig ht-

forward, rec u rsive neig hborhood op erations req u ire indirec t

addressing , ru n-leng th enc oding req u ires non-loc al c ommu -

nic ation, and edg e following is mostly seq u ential. H owever,

even in the seq u ential c ase the skeleton ap p roac h c an still

be u sed, if only to fac ilitate p rog ramming instead of p aral-

leliz ation. If sp ec ializ ed hardware then bec omes available,

it is easier to make u se of it.

3.2 B etw een-op eration p arallelism

A n imag e p roc essing ap p lic ation c onsists of a nu mber

of op erations desc ribed above, su rrou nded by c ontrol fl ow

c onstru c ts. B ec au se ou r hardware p latform is heterog e-

neou s, it is imp ortant that mu ltip le of these op erations are

ru n c onc u rrently, as not all p roc essors c an be working on the

same c omp u tation. We are therefore u sing async hronou s

R PC c alls as a method to exp loit this task-level p arallelism.

In R PC, the clie nt p rog ram c alls stu b s whic h sig nal a

se rv e r to p erform the ac tu al c omp u tation. In ou r c ase, the

ap p lic ation is the c lient p rog ram ru nning on the c ontrol p ro-

c essor, while the skeleton instantiations are ru n on the c o-

p roc essors. This alone does not imp ly p arallelism, bec au se

the stu b waits for the resu lts of the server before retu rning .

In async hronou s R PC, therefore, the stu b retu rns immedi-

ately, and the c lient has to b lock on a c ertain op eration be-

fore ac c essing the resu lt. This allows the c lient p rog ram to
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run concurrent to the server program, as well as multiple

server programs to run in parallel.

However, this still has the disadvantage of requiring the

client program to wait on the completion of an operation be-

fore passing its result to another one, even though it never

uses the results itself. To address this problem, we are using

MultiLisp’s concept of futures, placeholder objects which

are only blocked upon when the value is needed for a com-

putation. Since simple assignment is not a computation,

passing the value to a stub doesn’t require blocking; once

the called function needs the information, it will block it-

self until the data is available, without blocking the client

program:

while(1)

R ead(in);

PixelToPixelOp(op1 , in, inter1);

PixelToPixelOp(op2 , in, inter2);

PixelR educ tionOp(op3 , inter1, inter2, out);

/* ... Concurrent client code ... */

bloc k (out);

/* ... Dependent client code ... */

4 O ptimizations

While our futures-like implementation is much less elab-

orate than MultiLisp’s (requiring, for example, explicit

blocks on results, although these could be inserted by the

compiler), it does tackle two other problems: data distribu-

tion and memory usage. Both originate from our architec-

ture template, which features distributed-memory proces-

sors with a relatively low amount of on-chip memory.

Furthermore, although the skeletons are called as higher-

order functions in order to provide an easy migration path,

we avoid the function call overhead by using source-to-

source transformations. Using transformations also allows

us to translate between different target processor languages,

and to provide an efficient way to specify skeletons that are

polymorphic in the number and types of their arguments.

4.1 D ata d istrib u tion

The data generated by most image processing operations

is not accessed by the client program, but only by other op-

erations. This data should therefore not be transported to

the control processor. In order to achieve this, we make a

distinction between images (which are streams of values)

and other variables.

Images are never sent to the control processor unless

the user explicitly asks for them, and as such no memory

is allocated and no bandwidth is wasted. Rather, they are

transported between coprocessors directly, thus avoiding

the scatter-gather bottleneck present in some earlier work

[9 ]. All other variables (thresholds, reduction results, etc.)

are gathered to the control processor and distributed as nec-

essary. These can be used by the programmer without an

explicit request.

The knowledge about which data to send where, simply

comes from the inputs and outputs to the skeleton opera-

tions, which are derived from the skeleton specification and

are available at run time. Coprocessors are instructed to

send the output of an operation to all peers that use it as an

input.

4.2 M emory u sage

Our concern about memory usage stems from the fact

that especially SIMD LPAs for low-level image processing

may not have enough memory to hold an entire frame, let

alone multiple frames if independent tasks are mapped to

it. These processors are usually programmed in a pipelined

way, where each line of an image is successively led through

a number of operations. We would like our system to con-

serve memory in the same way, and have therefore specified

all our skeletons to read from and write to F IF O buffers.

The distribution mechanism allocates these buffers, and

sets up transports as described above. The operations them-

selves read the needed information from the buffer, process

it, and write the results to another buffer. A method is pro-

vided to signal that no more data will be forthcoming. This

conserves memory, because even a series of buffers is gen-

erally much smaller than a frame. Simultaneously, it hides

the origin of the data, making the operations independent

of the producers of their input and the consumers of their

output.

The price of all this is that operations must consume data

in a certain order, and if the source operation doesn’t gener-

ate it in the correct sequence, a reordering operation must

be inserted, typically requiring a frame memory. Fortu-

nately, many low-level operations can tolerate different or-

derings, while more irregular operations are generally run

on processors with enough memory.

5 R esults

We have implemented a double thresholding edge detec-

tion algorithm on a prototype architecture consisting of a

XETAL [1] 16 MHz 3 2 0-PE SIMD processor and a TriMe-

dia [12 ] 18 0 MHz 5 -issue V LIW processor (figure 1). In

this algorithm, the Bayer pattern sensor output is first inter-

polated, then the Sobel X and Sobel Y edge detection filters

are run and combined, the output is binarized at two levels,

and finally the high threshold is propagated using the low

threshold as a mask image. This final propagation cannot

be run on the XETAL, because it requires a frame memory.

Three situations were compared: one in which the entire

algorithm was implemented in a single operation on the Tri-

Media, as a baseline for how a sequential application would

be written. Next, the operation was split into tasks as de-

scribed above, and all tasks were mapped to the TriMedia;

this shows the overhead caused by the task switching and

buffer interaction. Finally, all low-level operations were

mapped to the XETAL, while the propagation and display

were mapped to TriMedia; this resembles the final situation

as it would run on our system. See table 1.
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8, 16 MHz2, I2C

10, 16 MHz

SIMD processor

320 PEs, 5 GOPS

16 linemems, 107Gb/s

5−way VLIW, 900 MOPS

ILP processor

640x480

Bayer pattern

CMOS sensor

VGA out

32 MB

SDRAM

Light

pSOS RTOS

Figure 1: Inca+ prototype architecture (Philips CFT)

Table 1: Timing results of the double thresholding edge de-

tection algorithm

Trial Processing tim e

Single operation (TriMedia) 115 ms

Split operations (TriMedia) 124 ms

Parallel (XETAL + TriMedia) 67 ms

Because XETAL has only 16 line memories, the buffers

between the filters were 1 line. On the TriMedia, they were

16 lines, to avoid too much context switching. An allocate-

and-release scheme was used on the TriMedia, so that no

extra state memory was needed in the filters, and no unnec-

essary copies were made.

As can be seen, the overhead of running the RPC system

is around 8% (with 16-line buffers; the overhead approaches

zero if full-frame buffers are used, but that is unrealistic).

This seems quite a reasonable tradeoff if we consider that it

can now run transparently on the parallel platform, achiev-

ing a 4 2% processing time decrease. Actually, because the

filtering and propagation are done concurrently in the par-

allel case, the processing time is bounded by the slowest

operation, which is the propagation.

6 C onclusions and future work

We have presented a system in which an application de-

veloper can construct a parallel image processing applica-

tion with minimal effort. Data parallelism is captured by

specifying the way to process a single pixel or object, with

the system handling distribution, border exchange, etc. Task

parallelism of these data parallel operations is achieved

through an RPC system, preserving the semantics of normal

function calls as much as possible. Results from an actual

prototype architecture have shown that the system works,

and can achieve a significant speedup by using an SIMD

processor for low-level vision processing.

The automatic skeleton instantiation is currently limited

to ILP processors, and we wish to include XETAL and

IMAP skeletons as well. Furthermore, we want to inves-

tigate dynamic image sizes and data types. Finally, an au-

tomatic mapping step should combine CPU-, memory-, and

bandwidth usages to best determine buffer sizes and assign

operations to processors.

This work is supported by the Dutch government in their

PROG RESS research program under project EES.54 11.
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