PROCEEDINGSOF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

SmartCam: Devices for Embedded Intelligent Cameras

W. Caarls, P.P. Jonker, and H. Corporaal
{wcaarls, pieter}@ph.tn.tudelft.nl, h.corporaal@tue.nl
Pattern Recognition Group, Department of Electrical Engineering
Delft University of Technology, Eindhoven University of Technology

Abstract— The advent and subsequent popularity of low
cost, low power CMOS vision sensors enables us to inte-
grate processing logic on the camera chip itself, thereby
creating so-called smart sensors. They have an on-chip
SIMD data processing array controlled by an off-chip con-
troller. Smart sensors can execute low-level image pro-
cessing routines as soon as one or more image lines are
converted; they do not have to wait for the whole im-
age. High level image processing like feature extraction
and object detection and tracking can be performed with
a separate powerful off-chip processor.

Current solutions have several problems. It is totally
unclear what the right architectural parameters are for a
given application domain. There are many parameters, like
pixel array size, pixel properties, number of AD-converter
units, accuracy, number of pixels per SIMD processor ele-
ment, processor element functionality, etc. Also the func-
tionality of the external processor and its connectivity with
the smart sensor has to be determined. Furthermore, intu-
itive mappings of algorithms on architecture components
are used, after the architecture has been determined. It
will be clear that this is far from optimal. Finally we fore-
see a further integration, making a combination of on-chip
vision sensor, pixel processing, control, and feature / ob-
ject processing possible. The result is a low-cost one-chip
smart camera (so-called SmartCam) solution. This means
that research is needed to explore the new architectural
opportunities and consequences.

The SmartCam project investigates these new oppor-
tunities and contributes to a better and more quantita-
tively guided design trajectory. In particular, we will in-
vestigate the impact of current applications, define rele-
vant architectural parameters and develop an architectural
template, enhance our existing application mapping envi-
ronments for SIMD and ILP (Instruction-Level Parallel)
processors, and perform two case studies. The work will
focus on creating an environment for exploring the design
space parametrized by the architectural template and in-
tegrating this with our application mapping environment.

Keywords— Embedded system design, Smart Sen-
sors, Design Space Exploration, Parametric design, Pro-
grammable design, Heterogeneous architecture, Low
power, High performance, Small and Cheap implementa-
tions

© PROGRESS/STW 2002, ISBN 90-73461-34-0

I. INTRODUCTION

Smart CMOS sensors enable low power and inte-
grated intelligence. However, the control processor,
feeding the SIMD processor array with instructions
and supporting basic program control structures, is
usually not integrated with the smart sensor. On top
of this, a separate powerful general purpose processor
is usually needed in embedded applications for feature
and object processing and (motor) control tasks. Inte-
grating all this functionality on a single chip will have
a positive effect on the cost, power consumption, la-
tency and inter-processor bandwidth. Given the fact
that smart image sensors can already be realized in
CMOS and the continuous increase in CMOS density,
we foresee that in the future such an integration will
take place (see figure 1).

While integrating all this functionality on a single
chip can be advantageous, it is very hard to define a
solution that fills the needs of a broad range of mar-
kets: a designer of AIBO [1]-like appliances will have
a very different set of requirements than a designer
of high-quality systems for product inspection. Both
the SIMD and general purpose processor parts will
therefore have to be flexible, and because of this we
will focus on using an ILP (instruction-level parallel)
general purpose processor, which provides high per-
formance with flexibility tuned to the application at
low cost.

Building custom camera-and-logic application-
specific integrated circuits (ASICs) (instead of relying
on off-the-shelf components such as CMOS vision sen-
sors and general-purpose or digital signal processors)
in a sound and informed manner requires a frame-
work in which the design space of these circuits can
be explored by the application developer. Guiding
the research of the SmartCam project will be the de-
velopment of an integrated environment for this pur-
pose, and the research topics can therefore be seen as
the prerequisites for building such a tool: Application
Impact Research (AIR), Architecture Template (AT),
Algorithm Transformation Environment (ATE), Map-
ping and Scheduling (MAS), Analysis Tool (AT), and

OCTOBRE 24, 2002 JAARBEURS UTRECHT NL



Input & Output
Sensors & Actuators
Networking

ILP processor

CMOS sensor array

SIMD control processor

Fig. 1. Basic components of the SmartCam Architecture Template. The dotted lines represent interconnection possibil-
ities which may not be present depending on the architecture parameters.

Design Space Exploration Methods (DSEM). To fur-
ther evaluate the integrated environment, we will per-
form two case studies (CS1, CS2).

The rest of the paper will give an overview of these
research topics.

II. APPLICATION IMPACT RESEARCH

Before building any development tool, it is helpful
to have a set of requirements based on the applica-
tions that will be built with it. In the case of embed-
ded intelligent cameras, these include parameters such
as throughput, latency, memory requirements, image
sizes, accuracies, functional requirements, etc. The
impact of target applications also includes the inher-
ent ILP parallelism and data parallelism that can be
expected, and the determination of a set of core algo-
rithms needed for low- and high level image processing
as applied within SmartCams.

For this, we will research the possibilities for Smart-
Cams on several university and commercial applica-
tions such as component placement and product in-
spection. T'wo university projects will also be used as
case studies (see section VIII).

III. ARCHITECTURE TEMPLATE

After researching the impact of the target applica-
tions, we will define a combined SIMD-ILP architec-

15

ture template and determine the parameters of inter-
est. The basic structure of this template will depend
on the application requirements, but will at least con-
tain a CMOS vision sensor, SIMD processor array,
SIMD control processor, ILP processor, distributed
and centralized ram, instruction ram, and basic inter-
connections (see figure 1). Configurable parameters
for various parts of the template could then include:

¢« CMOS vision sensor The number of rows and
columns of the pixel array, the use of color or grayscale
pixel elements, and the number of AD conversion units
and their accuracy.

o SIMD processor array The number of pixel columns
per SIMD processing element (PE), the number of
bits of each PE, PE functionality, distributed memory
size and organization, SIMD control processor (CP)
functionality.

o ILP processor The number of function units (F'Us),
operation repertoire (determining the type of function
units), the number of registers, register files and ports,
FU connectivity, memory hierarchy and cache sizes.
o Interconnections between the vision sensor and PEs,
PEs and distributed RAM, PEs amongst themselves,
CP and RAM, ILP and CP, ILP and RAM. Note that
it is possible to have quite complex sensor-PE inter-
connectivity for applications that use specific regions-



of-interest (ROIs) and that want to address those in
a linear manner, requiring a translation to a wvirtual
sensor array.

The architecture template will also have to incor-
porate the possibility of not integrating the CMOS
vision sensor with the processing logic. This is nec-
essary to accommodate high-resolution sensors with
powerful computation, which is not possible on a sin-
gle chip due to area and process restrictions. Since
the CMOS process parameters of the sensor and logic
are not the same, some tradeoff between these two
will have to be made, and if no satisfactory solution
is possible a multi-chip solution must be considered.

IV. ALGORITHM TRANSFORMATION ENVIRONMENT

In order to make efficient use of the possibilities
of the SIMD and ILP hardware, the structure of the
application (assumed to be written in C/C++) may
need to be transformed. Programmers are usually
more concerned with functional correctness than with
the possible mapping of their software onto specific
hardware components, and especially because of the
fluidity of the hardware due to our architectural tem-
plate they must be assisted in this mapping.

First, we will assist the application developer by
providing a library of implementations of kernel image
processing algorithms (like the one developed in the
NWO-PILE program [6]) which are parametrized in
much the same way as the architectural template. If
the developer uses these algorithms in his software,
it will automatically use the best hardware mapping
available within the library.

Second, we will use and extend a source code trans-
formation tool (CTT, [3]) to assist the developer in
enhancing loop parallelism, increasing the scheduling
scope, removing harmful dependencies, better using
the memory hierarchy or exploiting local memories,
and reducing power requirements.

V. MAPPING AND SCHEDULING

After defining the architecture template, we can use
a specific parameter setting on that template and the
transformed code to generate a mapping of the ap-
plication on the hardware, and to schedule the use
of the available hardware (function units, registers,
buses, etc.). This requires the use of a retargetable
compiler, and we will make use of our previous work
in the field of ILP and SIMD code generation ([3], [4]).

Since this step will be the basis of our performance
evaluation, the quality of the generated code will be

16

crucial. Our goal is to create a compiler environment
that can systematically cope with all the different
hardware parameters. During the exploration phase
it is possible to further augment the performance of
the compiler by using the execution profile generated
in the analysis stage, described below.

VI. ANALYSIS TOOL

The analysis tool supplies both a performance and
cost evaluation. The performance estimation depends
on the clock speed of the generated hardware and the
number of machine cycles it takes the application to
execute a predetermined input or set of inputs. In
both cases it is infeasible to generate a complete lay-
out or to do a full machine simulation, so we will have
to use analytic models for predicting relevant parame-
ters like the length of the critical path. For estimating
the execution time, it can be helpful to first generate
a high-level execution profile in terms of loop repeti-
tions, branch probabilities, etc. This speeds up the
analysis time significantly, and can still give cycle-
accurate results [5].

As with the cycle time estimation, it is infeasible to
generate a full layout for the evaluation of the needed
chip area and power dissipation. We will research an-
alytic models specifically for the developed SmartCam
architecture template environment. Such a model will
also be necessary to predict the memory behavior of
the ILP because of cache indeterminacy.

VII. DESIGN SPACE EXPLORATION METHODS

The final prerequisite for building a SmartCam de-
sign space exploration tool is the development of al-
gorithms to steer the possible software, hardware and
tool chain transformations (see figure 2). Even when
restricting the design space to our template, and to a
well defined set of source-to-source transformations,
the design space is extremely huge and cannot be
investigated manually or exhaustively. Many algo-
rithms and Al techniques have been used for this pur-
pose ([5], [2]), and we will be using these to steer the
transformations semi-automatically: we believe the
designer always has final control, and can use his ap-
plication knowledge to drastically reduce the design
space.

VIII. CASE STUDIES

We will use two case studies to evaluate and further
refine our design environment: the UBICOM-Headset
and RoboCup projects.



Application Software
Description

Compiler
Description

-

High-level simulation and
Software analysis

Application Behaviour
Description

Mapping and Scheduling Hardware Template

Description

Simulation and Analysis

Fig. 2. Design Space Exploration flow diagram, based on the Y-chart philosophy.

A. UBICOM-Headset

Within a current program of the TU Delft, The
Ubiquitous Communication Project (UBICOM), aug-
mented reality headsets based on retinal scanning dis-
play techniques are involved [7]. With such a headset
on, persons can have a virtual image projected ex-
actly over their normal view to augment their reality.
The graphics involved comes over a wireless link from
some backbone system. However, the graphics should
be adapted to the current position of the person’s head
and in case of the retinal scanning display technique,
also to the position of the eye pupil.

For such a system, low cost tracking camera’s are
needed that are able to track objects to maintain po-
sition and orientation of the user and very high speed
but small array camera’s are needed to keep track of
the pupil positions.

B. RoboCup

The RoboCup project aims to stimulate research
into autonomous intelligent agents by organizing soc-
cer competitions between robots. Challenges include
localization, object recognition, control tasks, artifi-
cial intelligence strategies, team cooperation, etc.

The use of a smart camera for segmentation, ob-
ject detection and tracking at high speed allows for a
faster cycle time and better control. It also releases
the central processor of these low-level tasks such that
it can devote more time to high-level Al decisions.

IX. CONCLUSION

We have introduced the SmartCam project and dis-
cussed the necessary steps to enable application devel-
opers to create custom smart sensors in a quantified

17

and informed manner. We will realize this by spec-
ifying an architecture template for camera-and-logic
applications and building an integrated development
environment for exploring the design space of that
template. The development environment will feature
analysis tools that provide feedback to the developer
about the chip area, power consumption, and speed
of a proposed solution, allowing him to make the final
cost /performance tradeoff.

This work is supported by the Dutch government
in their PROGRESS research program.

REFERENCES

[1] Entertainment robot aibo. Website. http://www.aibo.com.
[2] G. Ascia, V. Catania, and M. Palesi. A framework for design
space exploration of parametrized vlsi systems. In Proceed-
ings of the 15th International Conference on VLSI Design.
IEEE Computer Society, 2002.

M. Boekhold, I. Karkowski, and H. Corporaal. A pro-
grammable code transformation engine. In Proceedings of
ETAPS99, 1999.

H. Corporaal. Microprocessor architectures: From VLIW to
TTA. John Wiley and Son Ltd, 1998. ISBN 0-471-97157-X.
G.J. Hekstra, G.D. La Hei, P. Bingley, and F.W. Sijster-
mans. Trimedia cpu64 design space exploration. In Pro-
ceedings of the IEEE International Conference on Computer
Design, pages 599-606. IEEE Computer Society, 1999.

C. Nicolescu and P.P. Jonker. Towards parallel image pro-
cessing in heterogeneous architectures. In H. Arabnia, edi-
tor, Proceedings of the International Conference on Imaging
Science, Systems, and Technology, pages 311-317. CSREA
Press, 1999.

S. Persa and P.P. Jonker. On positioning for augmented
reality systems. In H.-W. Gellersen, editor, Proceedings of
the First International Symposium on Handheld and Ubiqui-
tous Computing, volume 1707 of Lecture Notes in Computer
Science, pages 327-329. Springer, Berlin, 1999.

[4]

[5]

[6]

[7]



	Contents

