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Abstract— The last few years have seen the advent of
Smart Cameras, surveillance-camera sized devices with on-
board programmable logic. Usually, Digital Signal Proces-
sors (DSPs) or general-purpose (GP) microprocessors are
used, but obviously the specific field of image processing al-
lows for many architectural optimizations, such as the use
of single-instruction multiple-data (SIMD) processors for
filtering. Furthermore, intuitive mappings of algorithms
on architecture components are used, after the architec-
ture has been determined. It will be clear that this is
far from optimal. Finally we foresee a further integration,
making a combination of on-chip vision sensor, pixel pro-
cessing, control, and feature / object processing possible.
The result is a low-cost one-chip smart camera (so-called
SmartCam) solution. This means that research is needed
to explore the new architectural opportunities and conse-
quences.

The SmartCam project investigates these new oppor-
tunities and contributes to a better and more quantita-
tively guided design trajectory. This paper describes the
design flow as seen by the application developer: the use
of algorithmic skeletons to exploit data-parallelism, and
design space exploration to find a suitable board- and pro-
cessor architecture. We explain how it can lead to smaller,
cheaper, and more efficient devices, tailored to a specific
application or set of applications.

I. Introduction

The SmartCam [2] project aims to investigate
the design of application-specific programmable smart
cameras, with integrated sensor, SIMD-, and ILP pro-
cessors. In such a camera, a lot of vision processing is
done on-board, allowing the camera to actuate control
systems, raise alarms, or output symbolic informa-
tion. Single instruction multiple data (SIMD) proces-
sors are especially well suited for the pixel and neigh-
bourhood operations common in low-level image pro-
cessing, while a network of instruction-level parallel
(ILP) processors can handle the more coarse-grained
and irregular algorithms found in intermediate- and
high-level tasks.

We are most interested in quantifying the design flow
of such systems via the use of simulation and analy-
sis in a design space exploration (DSE ) environment,

and in the development of an intuitive programming
model. In this paper, we will first introduce the pro-
gramming model, which is based on instantiating al-

gorithmic skeletons in order to bring parallelism into
a sequential code image. Then, we will show how this
is integrated in the overall DSE framework, and how
this allows a developer to generate the most appropri-
ate architecture for his application.

Section II will review previous work in the field of fast
image processing, providing a reference for our archi-
tecture template and programming model, described
in sections III and IV. We will continue by introduc-
ing our DSE framework in section V, and section VI
gives an example of the entire design flow. Finally, we
will have some concluding remarks.

II. Previous work

The large amounts of data used in image process-
ing, and the speed needed to process this information
in a reasonable amount of time, has led the image
processing community to look into special computer
architectures since the early 1970s [16]. Subsequent
miniaturization efforts have brought us to the point
where it is possible to integrate an entire vision pro-
cessing system in a single security-camera sized de-
vice.

A. Stand alone systems

Recognising the data parallelism inherent in low-
level vision operations such as thresholding and con-
volution, image processing systems have been de-
signed massively parallel from the start. This has
taken many forms, such as multicomputers [6], SIMD
processor arrays [10], and pipelines [18]. However,
with ever increasing workstation processing speeds,
the advent of cheap Beowulf-type commodity clus-
ters [27] and the increase in their communications
bandwidth, the other architectures have faded into
the background. Pipelines are difficult to program
and cannot cope with dynamic control flow, and large
SIMD systems, while very much suited to low-level im-
age processing, are just too expensive and specialized.
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Fig. 1. UCL CLIP4 SIMD image processing system

The sole survivor is the linear SIMD architecture, that
can be found as accelerator board, architecture com-
ponent in smart cameras and even in a rudimentary
form in MMX/SSE/Altivec instruction sets in general
purpose processors.

Clusters are usually programmed using the MPI mes-
sage passing library [11]. Data-parallel language ex-
tensions such as CC++ [4] or the compiler-directive
based OpenMP [20] are also used, but the amount
of effort required keeps image processing researchers
away, except when the added speed is absolutely nec-
essary. Recent efforts have created specific image pro-
cessing libraries which generate data-parallel [24] or
even mixed data/task parallel [26] programs from se-
quential code images, which go a long way towards
providing researchers with the benefits of parallel pro-
cessing without the hassle.

B. Vision accelerator boards

Because of the increased power and area efficiency,
SIMD arrays, and in particular linear processor arrays
(LPAs), are still frequently used in embedded appli-

Fig. 2. NEC IMAP-Vision SIMD vision accelerator

cations. Vision accelerator boards are employed in
real-time control systems where there is enough room
to have a workstation. They contain LPAs (IMAP-
Vision [28]), DSPs (FUGA [21]), or GP processors
(GenesisPlus [19]).

The IMAP-Vision uses a data-parallel C extension
called 1dc [17] to program the LPA, while the FUGA
and GenesisPlus are programmable in standard C++.
All boards provide optimized library routines for com-
mon image processing operations. In addition, the
GenesisPlus uses the library routines to interface with
a separate neighbourhood processor as well.

The use of an explicitly parallel language makes the
IMAP-Vision more difficult to program, but also po-
tentially faster. It occupies a place between assem-
bly language, which is always fastest but not realis-
tically used by image processing researchers, and a
completely library based approach, which may shield
the programmer too much to make any optimizations.
It would seem that a library-based system in which
the user can descend to a 1dc-like (parallel) level if
necessary is the best approach.

C. Smart cameras

For the even more embedded market, with a need
to be very small and power efficient, cameras that in-
tegrate sensing and processing are emerging. Again,
DSP (Vision Components [13], iMVS [23]) and GP
(Legend [25], mvBlueLYNX [12]) solutions are of-
ten used, but single-chip LPAs (Xetal [1], added to
Inca311 [5]) and even integrated sensor/LPA chips
(MAPP2500 [15]) exist as well.

Again, all systems are programmable using an im-
age acquisition and processing library, but the LPAs,
because of the simplicity of the processing elements
(PE s), cannot be programmed in C. Xetal tries to
remedy this by providing a C-like macro language,
while the MAPP2500 avoids the problem altogether
by only providing a few algorithms specific to the ex-
pected application domain (range imaging). Both so-
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Fig. 3. Philips CFT Inca311 Intelligent Camera

lutions are unsatisfying.
Two of the smart cameras, Inca311 and Legend,

are also programmable using graphical programming
languages. Both are targeted at industrial inspec-
tion, and allow novices in the field of image processing
to graphically connect algorithms like sub-pixel edge
detection, angle measurements and template match-
ing. Efforts have been made to put such a user in-
terface above a library-based approach, providing an-
other level of abstraction in a single framework.

III. Architecture Template

In our SmartCam DSE environment, an appli-
cation designer will be able to generate an optimal
smart camera hardware configuration for his specific
domain, based on his application code and various
constraints such as size, cost and power consumption.
However, for this approach to be feasible it is neces-
sary to restrict the search space by imposing an ar-
chitecture template. Based on the previous work de-
scribed in the previous section, our architecture tem-
plate will consist of a sensor, LPA(s), instruction-level
parallel (ILP) processor(s), memories, and communi-
cations peripherals (see figure 4). These will be pa-
rameterizable with regard to resolution, number of
PEs and PE functionality, data width, the amount
and type of functional units, etc. The choice of an
LPA is simple, because it is perfectly suited for the
data parallelism inherent to low-level image process-
ing operations. ILP processors, such as very long in-
struction word (VLIW ) and superscalar processors,
can execute multiple independent instructions per cy-
cle, exploiting a finer-grained level of parallelism than
LPAs. This is necessary because higher-level vision
processing tasks are too irregular to execute on LPAs.
Finally, using a network of processors allows us to take
advantage of the independence between different im-

age processing tasks, or between different stages in a
pipeline.

IV. Programming model

Of course, managing such a diverse set of parame-
terizable processors without putting too great a strain
on the programmer requires a unified programming
model. The programming languages for the systems
described in section II fall in five categories: (par-
allel) assembly, specialized parallel languages, data-
parallel extensions to a sequential language, (gener-
alized) libraries, and graphical programming environ-
ments. We think that assembly is too time consuming,
and specialized parallel languages require too much
effort to learn to gain widespread use in real applica-
tions. This leaves us with three viable options; how-
ever, as described in [24], any deviation from a stan-
dard sequential programming model creates a barrier
for adoption, and thus we would like to limit that as
much as possible.

Thus, our programming model will consist of a
C/C++ image processing library, possibly with a
graphical programming environment on top. If the
user wants to add library routines, either to accom-
modate new algorithms or to speed up existing ones,
he can do so by using some data-parallel extensions
in the form of compiler directives or pragmas. Note,
though, that because of the possibly limited capabili-
ties of some of the processors in the architectural tem-
plate, he may have to provide several versions.

A. Algorithmic skeletons

Because extensions to the library should be as in-
frequent as possible, we will base it around the con-
cept of algorithmic skeletons [7], also called template-
or pattern-based parallel programming. This means
that the library provides higher-order functions which
only implement a certain structure and communica-
tion, while the user provides the code for the actual
computation (see figure 5). A useful survey of differ-
ent skeletons and implementations is contained in [3].
In the field of low-level image processing, examples
are generalized skeletons for point operations, neigh-
bourhood operations, and global reductions.

By using the algorithmic skeletons, the user is com-
pletely shielded from the parallel implementation of
his algorithm, providing only the sequential code to
process a single datum. The advantage, apart from
providing the developer with a sequential interface
and avoiding changes to the library, is that this ab-
straction allows the program to be executed on dif-
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Fig. 4. A possible architecture template for a smart camera device, containing SIMD, ILP, and special-purpose processors.
All components, including the interconnection network, are subject to adjustment by the architecture exploration.

A higher-order function is a function which takes another function as input. We can use this to abstract
over the structure of a certain computation. Consider the following code:

for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)
out [y ][x ] = (in[y ][x ]>128);

Using a higher-order function, PixelToPixelOp, we can separate the structure from the computation.
PixelToPixelOp will implement the loops, calling binarize every iteration.

int binarize(value)
return (value>128);

void PixelToPixelOp(int in[HEIGHT][WIDTH], int out [HEIGHT][WIDTH], int (*op)(int))
for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)
out [y ][x ] = op(in[y ][x ]);

PixelToPixelOp(in, out, binarize);

Fig. 5. Abstracting over structure using higher-order functions

ferent processor architectures without changes to the
user code: once a skeleton implementation has been
provided for the architecture, it is possible to run
any instantiation of it1. Skeletons which are not im-
plemented on a certain architecture are simply never
scheduled to those processors.

While this abstraction over communication as well

1Severely limited architectures – like single-ALU processing
elements in SIMD systems – may have additional requirements
on the skeleton instantiation functions, such as the absence of
indirect addressing.

as architecture is very convenient, algorithms which
cannot be captured in one of the provided skele-
tons are executed sequentially. That can be avoided
by providing the user with low-level communication
primitives, but this might introduce problems with
scheduling and maintainability. Therefore, it is bet-
ter to allow the programmer to create his own skele-
tons, possibly based on already existing ones. In
the ideal case this would be done in an architecture-
independent manner, but for some architectures that
is either impossible or inefficient. Thus, there are four
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levels of abstraction in our programming model:

1. No abstraction for the specification of skeletons for
restricted architectures or fixed-function blocks.
2. Abstraction over architecture for the specification
of skeletons for general architectures, such as those
capable of executing C.
3. Abstraction over communication for the user pro-
gram that makes use of the skeletons.
4. Abstraction over syntax for a graphical program-
ming environment.

V. DSE framework

Writing the application is only the first step in our
framework (see figure 6). The compilation trajec-
tory takes the source code, instantiates the skeletons,
extracts a macro dataflow graph, schedules the dif-
ferent skeleton instantiations to the available proces-
sors in the architecture template instantiation, and fi-
nally compiles the scheduled code for the different pro-
cessor types. The design space exploration environ-
ment finds the most suitable processor architecture by
structurally simulating and analyzing the application
on different processor architectures (intra-processor
optimization loop) and different combinations of pro-
cessors (inter-processor optimization loop). Finally,
the developer can also access the results, and use
them to tune his program (source code transforma-
tion loop).

A. Compilation

The different skeleton instantiations in an image
processing application are not fully dependent. Some
can be run concurrently, while others can be pipelined.
The compiler starts by extracting a macro dataflow
graph (MDG) from the application in order to ana-
lyze the dependencies. It then makes a compromise
between data-parallel (within the skeletons) and task-
parallel (between the skeletons) execution [22]. It uses
a cost model and profiling information to determine
the weight of each task.

B. Intra-processor optimization

Our architecture template specifies the type of pro-
cessors that can be used, but not their exact com-
position, such as the number and types of functional
units. The intra-processor optimization step heuristi-
cally iterates over the possibilities. Each iteration the
application is simulated, and profiling information is
used to steer the exploration of the design space [9].

C. Inter-processor optimization

Because the architecture template allows the use
of more than one processor, an inter-processor op-
timization step is needed to find the best mix, and
the interconnection between them. This follows much
the same strategy as the intra-processor optimization,
but also uses the weights of the edges in the macro
dataflow graph in order to determine local intercon-
nections between processors. A rescheduling of the
macro dataflow graph is necessary for every iteration.

The result of these two optimization steps is a set of
architectures that are optimal with regard to speed,
area and power consumption (the pareto-optimal set).
Based on his own design considerations, the user can
then make the trade-off himself.

D. Source code transformation

Based on feedback from the profiling done in the op-
timization steps, the user can decide to rewrite parts
of his application. For example, when rewriting a
legacy application, he can start by replacing the eas-
iest loops by skeleton instantiations in order to make
them execute in parallel. If no architecture can be
found that meets his requirements, he can replace
more difficult constructions. In this way, it is pos-
sible to construct a parallel application with the least
amount of effort.

VI. Design flow example

We will present a simulated design flow example.
Suppose that we want to find lines in an image us-
ing the Hough transform [14] using as little power as
possible, meaning that we want a low clock speed be-
cause that allows us to lower the supply voltage. In
this case, we are not as interested in the area the pro-
cessors occupy.

The application first convolves the image with an
edge detector, then binarizes on the edge strength,
and finally transforms the edges to the (ρ, φ) space,
where each point corresponds to a possible line. The
sequential code might look like this:
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Fig. 6. SmartCam design flow. Note the use of algorithmic skeletons to create data-parallel applications from a sequential
code image, and the different types of design space exploration to find a suitable architecture.

while (1)
getimage(in);
for (y=1; y < HEIGHT-1; y++)
for (x=1; x < WIDTH-1; x++)
/* Sobel X */
val=abs(-in[y-1][x -1]-2*in[y ][x -1]-in[y+1][x -1]
+in[y-1][x+1]+2*in[y ][x+1]+in[y+1][x+1]);

/* Sobel Y */
val+=abs(in[y-1][x -1]+2*in[y-1][x ]+in[y-1][x+1]
-in[y+1][x -1]-2*in[y+1][x ]-in[y+1][x+1]);

trans = {0};
/* Binarization */
if (val > 128)
/* Hough transform */
for (phi=0 ; phi < PHI RES; phi++)
trans[phi ][abs(x*cos(M PI*phi/PHI RES)
+y*sin(M PI*phi/PHI RES))]++;

Simulating this code on a Transport Triggered Archi-
tecture (TTA, [8]) ILP processor with 8 busses (uti-
lizing a lookup-table based Hough transform) results
in 5.2 MCycles for a 320x240 image with 32 angles, or
156 MHz for video speed at 30fps (discounting read-
out and display). The intra-processor optimization
step will find that there is no floating-point math, and
instantiate the processor accordingly. If this does not
meet the power requirements, the most logical step is
to use a neighbourhood skeleton for the edge detector,
and a pixel skeleton for the binarization:

int sobel(int **nbh)
val = abs(-nbh[-1][-1]-2*nbh[0][-1]-nbh[+1][-1]
+nbh[-1][+1]+2*nbh[0][+1]+nbh[+1][+1]);

val += abs(nbh[-1][-1]+2*nbh[-1][0]+nbh[-1][+1]
-nbh[+1][-1]-2*nbh[+1][0]-nbh[+1][+1]);

return val ;
int binarize(int val) return (val > 128);
while (1)
getimage(in);
NeighbourhoodToPixelOp(in, sob, 3, 3, sobel);
PixelToPixelOp(sob, edge, binarize);
trans = {0};
for (y=1; y < HEIGHT-1; y++)
for (x=1; x < WIDTH-1; x++)
if (edge[y ][x ])
for (phi=0; phi < PHI RES; phi++)
trans[phi ][abs(x*cos(M PI*phi/PHI RES)
+y*sin(M PI*phi/PHI RES))]++;

Within our template, the most energy-efficient way
of computing neighbourhood and pixel operations is
an LPA, and so the intra-processor optimization step
instantiates one with 320 processors. By scheduling
the application in a pipelined manner, this reduces the
critical path to 4.2 MCycles/image, at the expense of
a lot of area.

Most of the computation time is spent in the trans-
form, however, and parallelizing it is necessary if more
performance is to be gained:
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int sobel(int **nbh)
val = abs(-nbh[-1][-1]-2*nbh[0][-1]-nbh[+1][-1]
+nbh[-1][+1]+2*nbh[0][+1]+nbh[+1][+1]);

val += abs(nbh[-1][-1]+2*nbh[-1][0]+nbh[-1][+1]
-nbh[+1][-1]-2*nbh[+1][0]-nbh[+1][+1]);

return val ;
int binarize(int val) return (val > 128);
int hough(int x, int y, int val, int **trans)

if (val)
for (phi=0; phi < PHI RES; phi++)
trans[phi ][abs(x*cos(M PI*phi/PHI RES)
+y*sin(M PI*phi/PHI RES))]++;

int add(int val1, int val2 ) return (val1+val2 );
while (1)
getimage(in);
NeighbourhoodToPixelOp(in, sob, 3, 3, sobel);
PixelToPixelOp(sob, edge, binarize);
AnisoPixelToGlobalReductionOp(edge, trans,
hough, add);

We assume a skeleton AnisoPixelToGlobalReduc-
tionOp which in the limit constructs a transform for
each pixel, and adds them using a reduction tree. Be-
cause of the large amounts of communication time
(the size of the transform times the depth of the tree)
this does not scale well, but at 4 ILP processors it re-
duces the critical path to 1.2 MCycles/image, which
may well suit our requirements.

VII. Conclusion

Based on previous work, we have derived an archi-
tecture template and programming model for image
processing in smart cameras. The architecture con-
tains LPA and ILP processors, while the program-
ming model is based on algorithmic skeletons. We
have presented our DSE framework, which finds an
optimal instantiation of the template for a particular
application. An example has shown the iterative pro-
cess in which the user transforms his source code to
allow parallelization, and the optimizer finds the best
quantity and configuration of processors.

This work is supported by the Dutch government in
their PROGRESS research program.
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