
PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Data- and Task Parallel Image Processing on a Mixed
SIMD-ILP Platform using Skeletons and Asynchronous

RPC
W. Caarls, P.P. Jonker, and H. Corporaal

{W.Caarls, P.P.Jonker}@TNW.TUDelft.nl, h.corporaal@tue.nl

Quantitative Imaging Group, Department of Electrical Engineering

Delft University of Technology, Eindhoven University of Technology

Abstract— The SmartCam project investigates new op-
portunities provided by the integration of sensing and pro-
cessing in a single surveillance-camera sized device. More
specifically, it will provide tooling to find an application-
dependent mixture of single-instruction multiple-data
(SIMD) and instruction-level parallel (ILP) processors us-
ing design space exploration. This will allow developers in
fields such as robotics, surveillance, and industrial inspec-
tion to adapt the hardware to their application, instead of
the other way around.

Since a wide variety of hardware configurations are pos-
sible, and since it is undesirable to rewrite the program for
every one, we have proposed the use of algorithmic skele-

tons [4] to express data parallelism. An efficient heteroge-
neous system requires the exploitation of task parallelism
as well, though, and we have opted for a more conventional
presentation to make the transition to our system easier.

This paper describes our asynchronous remote proce-
dure call (RPC) system, optimized for low-memory and
sparsely connected systems such as smart cameras. It uses
a futures[13]-like model to present a normal imperative
C-interface to the user in which the skeleton calls are im-
plicitly parallelized and pipelined. Simulation provides the
dependency graph and performance numbers for the map-
ping, which can be done at run time to facilitate dependent
branching.

Keywords— Design Space Exploration, Heterogeneous
Architectures, Constrained Architectures, Algorithmic
Skeletons, Remote Procedure Call, Futures, Run-time
Scheduling

I. Introduction

As processors are becoming faster, smaller, cheaper,
and more efficient, new opportunities arise to inte-
grate them into a wide range of devices. However,
since there are so many different applications, there
is no single processor that meets all the requirements
of every one. The SmartCam [6] project investigates
how an application-specific processor can be gener-
ated for the specific field of intelligent cameras, using
design space exploration.

The processing done on an intelligent camera has

very specific characteristics. On the one hand, low-
level image processing operations such as interpo-
lation, segmentation and edge enhancement are lo-
cal, regular, and require vast amounts of bandwidth.
On the other hand, high-level operations like clas-
sification, path planning, and control may be irreg-
ular while typically consuming less bandwidth [2].
The architecture template on which the design space
exploration is based therefore contains data-parallel
(SIMD) as well as instruction-parallel (ILP) proces-
sors.

One of the main goals of the project is keeping the
system easy to program. This means that one single
program should map to a wide range of configurations
of a wide range of processors. It also means that the
application developer shouldn’t have to learn a par-
allel programming language. The solution presented
below is based on using algorithmic skeletons to ex-
ploit data parallelism within each operation, while a
form of asynchronous RPC allows the operations to
run concurrently.

The structure of this paper is as follows: section II
reviews some related work. Section III presents our
prototype architecture, while sections IV and V de-
scribe our programming environment and some op-
timizations. Section VI details our implementation,
and section VII presents some results from our pro-
totype. Finally, section VIII draws conclusions and
points to future work.

II. Related work

Even restricting ourselves to systems that fit inside
a camera, there exist many different image processing
architectures:

• DSPs, VLIW processors optimized for signal pro-
cessing, like the Texas Instruments TMS320C6x se-
ries [20] and the Philips TriMedia [19].

• Vector architectures, scalars or superscalars with

27

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

an SIMD coprocessing unit, like the Berkeley VI-
RAM [8] project, and to a lesser degree Intel’s
MMX/SSE [14] and Motorola’s AltiVec.

• SIMD arrays, among many others, NEC IMAP [21]
and Philips XeTaL [1].

• FPGAs, which can implement operations in hard-
ware.

Recently, SIMD arrays of VLIW processors have also
been developed, like NEC’s IMAP-CE [9], and the
Stanford Imagine [16] architecture.

Of these architectures, pure SIMD arrays are the
most suited for low-level image processing, because
they have the largest degree of parallelism, while DSPs
work best with irregular problems, allowing different
instructions to run within one cycle. The other archi-
tectures make a compromise to perform well on both
domains, but since we are trying to separate these, it
makes sense to choose domain-specific architectures.

Programming environments for image and signal pro-
cessing applications are also widely ranged. Tightly
coupled systems usually have parallel extensions to
a sequential language, like Celoxica’s Handel-C [3] for
FPGA programming, or 1DC [10] for the IMAP cards.
More loosely coupled systems usually work with the
concept of a task or kernel, and differ in how these
tasks are programmed and composed.

Process networks such as Eclipse [17] allow much
freedom in specifying the tasks, but require a static
connection network between them. StreamC/KernelC
[11], developed for Imagine, reduces the allowed syn-
tax within a kernel, but makes the interconnections
dynamic by using streams. Their current imple-
mentation doesn’t support task parallelism, however.
EASY-PIPE [12] does, but requires a batch of tasks
to be explicitly compiled and dispatched by the user.
Their main contribution is the use of algorithmic
skeletons to make programming the tasks easier. Fi-
nally, Seinstra [18] allows no user specification of the
tasks, instead relying on an existing image process-
ing library. It is also limited to data parallelism, but
these restrictions allow it to be more transparent to
the user, presenting a purely sequential model.

Futures were introduced in the MultiLisp [15] lan-
guage for shared-memory multiprocessors. Request-
ing a future spawns a thread to calculate the value,
while immediately returning to the caller, which only
blocks when it tries to access it. Once the calculation
is complete, the future is overwritten by the calcu-
lated value. Batched futures [13] apply this concept

Fig. 1. Inca+ Prototype Smart Camera

to RPC, but with the intent to reduce the amount
of RPC calls by sending them in batches that may
reference each other’s results.

III. Architecture

Our prototype architecture is the Philips CFT
Inca+ prototype (see figure 1). This is a minimal im-
plementation of our architecture template, consisting
of one XeTaL [1] SIMD processor and one TriMedia
VLIW processor. There is one video speed channel
from the sensor to the XeTaL and one video speed
channel from the XeTaL to the TriMedia . The Tri-
Media can program the XeTaL via I2C. The architec-
ture is described in more detail in [7], and is schemat-
ically summarized in figure 2.

The XeTaL chip consists of 320 PEs and a control
processor, running at pixel clock. At VGA resolution
with a pixel clock of 16MHz and 30fps, it can pro-
cess over 1000 instructions per pixel, and has enough
memory to store 16 image lines. The TriMedia is a
5-way VLIW processor running at 180MHz. At the
same video speed that means around 100 operations
per pixel, but the pixel accesses may be irregular. An
external 32MB SDRAM provides enough storage for
most applications at this resolution. The TriMedia
runs the pSOS multithreaded real-time operating sys-
tem. This architecture is suited for image process-
ing because it takes advantage of the fact that image
processing applications progress from low-level, high-
bandwidth operations to high-level, low-bandwidth
operations. One drawback is that because there is
no channel from TriMedia to XeTaL , the TriMedia
cannot be used as a temporary frame store. This will
be remedied in a new prototype platform that is under
development.

28

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

8, 16 MHz2, I2C

10, 16 MHz

SIMD processor

320 PEs, 5 GOPS

16 linemems, 107Gb/s

5−way VLIW, 900 MOPS

ILP processor

640x480

Bayer pattern

CMOS sensor

VGA out

32 MB

SDRAM

Light

pSOS RTOS

Fig. 2. Inca+ prototype architecture

IV. Programming

Our programming environment is based on C, to
provide an easy migration path. In principle, it is
possible (although slow) to write a plain C program
and run it on our system. In order to exploit concur-
rency, though, it is necessary to divide the program
into a sequence of image processing operations, and
to string these together using function calls. Parts of
the program which cannot easily be converted can be
left alone unless the speedup is absolutely necessary.

A. Within-operation parallelism

The main source of parallelism in image process-
ing is the locality of pixel-based operations. These
low-level operations reference only a small neighbor-
hood, and as such can be computed mostly in par-
allel. Another example is object-based parallelism,
where a certain number of possible objects or regions-
of-interest must be processed. Both cases refer to data

parallelism, where the same operation is executed on
different data (all pixels in one case, object pixels or
objects in the other).

Data parallel image processing operations map par-
ticularly well on linear SIMD arrays (LPAs, [5]). How-
ever, since we don’t want the application developer to

write a parallel program, we need another way to al-
low him to specify the amount of parallelism present
in his operations. For this purpose, we use algorithmic

skeletons. These are templates of a certain computa-
tional flow that do not specify the actual operation,
and can be thought of as higher-order functions, re-
peatedly calling an instantiation function for every
computation. Take a very simple binarization:

for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)

out [y][x] = (in[y][x]>128);

Using a higher-order function, PixelToPixelOp, we
can separate the structure from the computation. Pix-
elToPixelOp will implement the loops, calling binarize
every iteration:

int binarize(int value)
return (value>128);

void PixelToPixelOp(int (*op)(int),
int in[HEIGHT][WIDTH], int out [HEIGHT][WIDTH])

for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)

out [y][x] = op(in[y][x]);

PixelToPixelOp(binarize, in, out);

Note that implementing PixelToPixelOp column-
wise instead of row-wise – by reversing the loops –
does not change the result, because there is no way
for op to reference earlier results (side effects are not
allowed). It can be said that by specifying the inputs
and outputs of the instantiation function, the skeleton
characterizes the available parallelism. So, by choos-
ing a skeleton, the programmer makes a statement
about the parallelism in his operation, while not spec-
ifying how this should be exploited. This freedom will
allow us to optimally map the operation to different
architectures.

Another benefit is that the image processing library
normally shipped with DSPs and other image proces-
sors is replaced by a skeleton library, which is more
general and thus less in need of constant updates.

B. Between-operation parallelism

An image processing application consists of a num-
ber of operations described above, surrounded by con-
trol flow constructs. In order to provide an easy mi-
gration path, these operations will be called as higher-
order functions, although the instantiation function

29

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

will be inlined at compile-time to ensure efficiency.
Furthermore, because our hardware platform is het-
erogeneous, it is important that multiple of these op-
erations are run concurrently, as not all processors can
be working on the same computation. We are there-
fore using asynchronous RPC calls as a method to
exploit this task-level parallelism.

In RPC, the client program calls stubs which sig-
nal a server to perform the actual computation. In
our case, the application is the client program running
on the control processor, while the skeleton instantia-
tions are run on the coprocessors. This alone does not
imply parallelism, because the stub waits for the re-
sults of the server before returning. In asynchronous
RPC, therefore, the stub returns immediately, and the
client has to block on a certain operation before ac-
cessing the result. This allows the client program to
run concurrent to the server program, as well as mul-
tiple server programs to run in parallel:

Read(in);
block(in);

PixelToPixelOp(op1, in, out1);
PixelToPixelOp(op2, in, out2);
/* ... Concurrent client code ... */

block(op1);
block(op2);

However, this still has the disadvantage of requiring
the client program to wait on the completion of in be-
fore proceeding, even though it never uses the results
except to pass them on to other RPC calls. To ad-
dress this problem, MultiLisp introduced the concept
of futures, placeholder objects which are only blocked
upon when the value is needed for a computation.
Since simple assignment is not a computation, pass-
ing the value to a function doesn’t require blocking;
once the called function needs the information, it will
block itself until the data is available, without block-
ing the client program:

while(1)
Read(in);
PixelToPixelOp(op1, in, inter1);
PixelToPixelOp(op2, in, inter2);
PixelReductionOp(op3, inter1, inter2, out);
/* ... Concurrent client code ... */

block(out);
/* ... Dependent client code ... */

In this piece of code, PixelReductionOp still cannot

run in parallel with both PixelToPixelOps, though,
because it has to wait for the data to become available,
even though the client program can continue. Indeed,
the RAW dependency makes it impossible to run them
concurrently on the same image, but it is possible to
run them concurrently on different images. We there-
fore introduce the concept of a composite operation,
which behaves the same as a normal operation, ex-
cept that it consists of more than one sub-operation.
As such, it may wait for data independently of the
calling program:

ProcessImage(in)
PixelToPixelOp(op1, in, inter1);
PixelToPixelOp(op2, in, inter2);
PixelReductionOp(op3, inter1, inter2, out);
/* ... Concurrent client code ... */

block(out);
/* ... Dependent client code ... */

while(1)
Read(in);
CompositeOp(ProcessImage, in)
/* ... More client code ... */

In this instance, that allows us to run different
stages of different images in parallel, because the next
Read (and ProcessImage, once Read finishes) can
start right after the previous one finished, instead of
having to wait for the processing.

V. Optimizations

While our futures-like implementation is much less
elaborate than MultiLisp’s (requiring, for example,
explicit blocks on results, although these could be
inserted by the compiler), it does tackle two other
problems: data distribution and memory usage. Both
originate from our architecture template, which fea-
tures distributed-memory processors with a relatively
low amount of on-chip memory.

A. Data distribution

The data generated by most image processing oper-
ations is not accessed by the client program, but only
by other operations. This data should therefore not
be transported to the control processor. In order to
achieve this, we make a distinction between images
(which are streams of values) and other variables.

Images are never sent to the control processor unless
the user explicitly asks for them, and as such no mem-
ory is allocated and no bandwidth is wasted. Rather,

30

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

they are transported between coprocessors directly,
thus avoiding the scatter-gather bottleneck present in
some earlier work [12]. All other variables (thresholds,
reduction results, etc.) are gathered to the control
processor and distributed as necessary. These can be
used by the programmer without an explicit request.

The knowledge about which data to send where sim-
ply comes from the inputs and outputs to the skeleton
operations, which are derived from the skeleton spec-
ification and are available at run time. Coprocessors
are instructed to send the output of an operation to
all peers that use it as an input.

B. Memory usage

Our concern about memory usage stems from the
fact that especially SIMD LPAs for low-level image
processing may not have enough memory to hold an
entire frame, let alone multiple frames if independent
tasks are mapped to it. These processors are usually
programmed in a pipelined way, where each line of an
image is successively led through a number of opera-
tions. We would like our system to conserve memory
in the same way, and have therefore specified all our
operations to read from and write to FIFO buffers.

The distribution mechanism allocates these buffers,
and sets up transports as described above. The op-
erations themselves read the needed information from
the buffer, process it, and write the results to another
buffer. A method is provided to signal that no more
data will be forthcoming. This conserves memory, be-
cause even a series of buffers is generally much smaller
than a frame. Simultaneously, it hides the origin of
the data, making the operations independent of the
producers of their input and the consumers of their
output.

The price of all this is that operations must con-
sume data in a certain order, and if the source op-
eration doesn’t generate it in the correct sequence, a
reordering operation must be inserted, typically re-
quiring a frame memory. Fortunately, many low-level
operations can tolerate different orderings, while more
irregular operations are generally run on processors
with enough memory.

VI. Implementation

Because work on the skeleton instantiation is still
in the early stages, we will discuss only our RPC sys-
tem. This system has been implemented on both a
network of workstations (NOW) and the Inca+ pro-
totype. The traces in this section were generated on

the NOW, while the performance figures in section
VII are gathered from the prototype implementation.

The library consists of the following components:
a front-end that enqueues operations, a mapper that
maps operations to processors, and a dispatcher that
dispatches operations, variables, and sets up buffers
and transports. If administrative data is not de-
stroyed, a trace generator can write a trace once the
program finishes. This trace can be used to bench-
mark individual operations to assist the mapping.

A. Enqueueing

Each call to an RPC stub enqueues that operation
in a list. All arguments are passed by reference, and
are tracked by their address. As such, an operation
that uses a variable that hasn’t been produced yet can
be marked as a consumer of that variable, such that
it will be sent as soon as it is available. Note that
this means our concept of futures is limited to their
use in stub calls, and using an output variable outside
of one requires an explicit block (although these may
be inserted by a compiler).

As a consequence of the use of buffers, it is necessary
to know how many consumers a stream will eventu-
ally have, because the data in the (cyclic) buffer may
not be overwritten unless it has been read by all con-
sumers. One possibility is to state that every output
can be read by only one operation, requiring an ex-
plicit duplication operation if there is more than one
reader. Rather, we have chosen to allow an arbitrary
amount of readers, and to require a finalization once
all consumers have been specified. This makes it eas-
ier to conditionally add readers.

Composite operations are a special case. These are
implemented using threads, but we want them to be-
have as much as function calls as possible. This means
that their arguments should be passed by value, and
thus we need to make explicit copies of their input
arguments. If such an input is a future, a new in-

stance is created, which allows the composite oper-
ation to independently block on it. The same goes
for stream inputs and outputs, which must be inde-
pendently finalized (although there is an implicit fi-
nalization at the end of the operation). Composite
operations may be arbitrarily nested.

We use a single assignment semantic, such that
each buffer only has one writer. This means that if
an output variable is reused, it points to a different

buffer. As a somewhat counterintuitive consequence,
The first assignment of an output by a composite op-
eration is used, instead of the last.

31

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

B. Mapping

Mapping means selecting the best processor for an
operation to run on, optimizing throughput and la-
tency. A static mapping can be generated if the course
of the program is known. This is the case in parts of
the program between data-dependent branches, called
basic blocks. A problem is that we cannot finish one
basic block before starting the next, as this requires a
frame memory for every image that is passed between
the two, and would effectively reduce task parallelism
to zero at each branch.

Fortunately, the granularity of our operations is
quite large (operating on images instead of single val-
ues), so we can spend a bit of time determining a map-
ping dynamically at run time. Currently, we employ
a greedy strategy that will map an operation to the
processor that most quickly produces its outputs, ac-
cording to a simple network flow model. This model
assumes that a processor’s cycles or a connection’s
bandwidth are equally distributed over all operations
or streams that are mapped to it. If an operation or
stream can’t use its share, the excess is distributed
over the other contenders, etc.

We never map an operation if the source of its in-
puts isn’t known, because that might result in impos-
sibilities if there is no connection between the proces-
sors. This occurs when using composite operations,
because their outputs are undefined until set by the
thread running the operation.

C. Dispatching

After an operation has been mapped to a processor,
it can be dispatched. During skeleton instantiation,
each operation is assigned an identifier, and this is
first sent to the coprocessor. Next, stream arguments
are checked; if the stream doesn’t have a buffer on the
processor, a new buffer is created, and a transport is
set up between the source buffer and the newly created
one. Then, the buffer id is sent. Finally, non-stream
input arguments are marshalled and sent as well.

The operation starts as soon as all its arguments
have been received. It will run until it blocks be-
cause of reading an empty buffer, or writing a full
buffer. The coprocessor then selects a new task that
isn’t blocked, and so on. In this way, the buffer sizes
define the task switching granularity.

Once the operation has finished, it signals the con-
trol processor, and transmits its results, if any. If
these results are needed by another operation, they
are sent back by the control processor. Any futures

XeTaL

TriMedia

xtstream0.scs

INTERPOLATE on line 48

xtstream1.scs

SOBELY on line 32 SOBELX on line 31

xtstream2.scs

ADD on line 33

xtstream3.scs

xtstream4.scs

tmstream0.scs

xtstream5.scs

BINARIZE on line 50

CAPTURE on line 47

tmstream1.scs

DISPLAY on line 52

PROPAGATE on line 51

Fig. 3. Trace of a double thresholding edge detection al-
gorithm

referencing the results are resolved by copying the
data to their addresses, and threads blocking on them
are unblocked.

D. Trace generation and benchmarking

The mapping process needs information about the
performance of each operation on each processor. This
requires benchmarking all operations independently.
By keeping a trace and storing all streams during a
simulation run, we can generate the required informa-
tion for such an independent benchmark: if we preload
the input streams and preallocate output streams, we
can get an ideal performance figure in the absence of

32

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

(a) Input image

(b) Output image

Fig. 4. Double thresholding edge detection

network bandwidths and competing operations.

Figure 3 shows such a trace, with operations in ovals
and buffers in square boxes. Each box contains the
name of the file which stores the trace’s information.

VII. Results

We have implemented the double thresholding edge
detection algorithm of figure 3 on the architecture de-
scribed in section III. In this algorithm, the Bayer
pattern sensor output (figure 4(a)) is first interpo-
lated, then the Sobel X and Sobel Y edge detection
filters are run and combined, the output is binarized
at two levels, and finally the high threshold is prop-
agated using the low threshold as a mask image (fig-
ure 4(b)). This final propagation cannot be run on
the XeTaL , because it requires a frame memory.

Three situations were compared: one in which the
entire algorithm was implemented in a single opera-
tion on the TriMedia , as a baseline for how a sequen-

TABLE I

Timing results of the double thresholding edge

detection algorithm

Trial Processing time

Single operation (TriMedia) 115 ms
Split operations (TriMedia) 124 ms
Parallel (XeTaL + TriMedia) 67 ms

tial application would be written. Next, the operation
was split into tasks as shown in the trace, and all tasks
were mapped to the TriMedia ; this shows the over-
head caused by the task switching and buffer inter-
action. Finally, all low-level operations were mapped
to the XeTaL , while the propagation and display
were mapped to TriMedia ; this resembles the final
situation as it would run on our system.

Because XeTaL only has 16 line memories, the
buffers between the filters were 1 line. On the Tri-
Media , they were 16 lines, to avoid too much context
switching. An allocate-and-release scheme was used
on the TriMedia , so that no extra state memory was
needed in the filters, and no unnecessary copies were
made. See table I.

As can be seen, the overhead of running the RPC sys-
tem is around 8% (with 16-line buffers; the overhead
approaches zero if full-frame buffers are used, but that
is unrealistic). This seems quite a reasonable trade-
off if we consider that it can now run transparently on
the parallel platform, achieving a 42% processing time
decrease. Actually, because the filtering and propaga-
tion are done concurrently in the parallel case, the
processing time is bounded by the slowest operation,
which is the propagation.

VIII. Conclusions and future work

We have presented a system in which an applica-
tion developer can construct a parallel image process-
ing application with minimal effort. Data parallelism
is captured by specifying the way to process a single
pixel or object, with the system handling distribution,
border exchange, etc. Task parallelism of these data
parallel operations is achieved through an RPC sys-
tem, preserving the semantics of normal function calls
as much as possible. Results from an actual prototype
architecture have shown that the system works, and
can achieve a significant speedup by using an SIMD
processor for low-level vision processing.

The skeleton instantiation is currently done by hand,

33

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

and we want to automate this in the future. Further-
more, we want to augment the system by allowing dif-
ferent data types and data orderings, with on-the-fly
insertion of conversion operators. Finally, the map-
ping should be expanded to include memory usage
and buffer sizing as well as CPU and bandwidth us-
age.

This work is supported by the Dutch government
in their PROGRESS research program under project
EES.5411.

References

[1] A.A. Abbo, R.P. Kleihorst, L.Sevat, P. Wielage, R. van
Veen, M.J.R. op de Beeck, and A. van der Avoird. A
low-power parallel processor IC for digital video cameras.
In Proceedings of the 27th European Solid-State Circuits
Conference, Villach, Austria. Carinthia Tech Institute,
September 18–20 2001.

[2] W. Caarls and P.P. Jonker. Benchmarks for smartcam de-
velopment. In Proceedings of Acivs 2003 (Advanced Con-
cepts for Intelligent Vision Systems). Ghent University,
September 2-5 2003.

[3] Celoxica Limited. Handel-C Language Reference Man-
ual, 2003. http://www.celoxica.com/techlib/files/

CEL-W030811132Q-60.pdf.
[4] M. Cole. Algorithmic Skeletons: Structured Management

of Parallel Computation. Research Monographs in Parallel
and Distributed Computing. The MIT Press, 1989. ISBN
0-273-08807-6.

[5] P.P. Jonker. Why linear arrays are better image proces-
sors. In Proceedings of the 12th IAPR International Con-
ference on Pattern Recognition, Los Alamitos, CA, volume
III, pages 334–338. IEEE Computer Society Press, October
1994.

[6] P.P. Jonker and W. Caarls. Application driven design of
embedded real-time image processors. In Proceedings of
Acivs 2003 (Advanced Concepts for Intelligent Vision Sys-
tems). Ghent University, September 2-5 2003.

[7] R. Kleihorst, H. Broers, A. Abbo, H. Embrahimmalek,
H. Fatemi, H. Corporaal, and P. Jonker. An SIMD-VLIW
smart camera architecture for real-time face recognition.
In Proceedings of ProRISC 2003, pages 1–7. Technology
Foundation STW, November 26-27 2003.

[8] C. Kozyrakis. Scalable Vector Media Processors for Em-
bedded Systems. PhD thesis, University of California at
Berkeley, May 2002.

[9] S. Kyo, T. Koga, S. Okazaki, and I. Kuroda. A 51.2 gops
scalable video recognition processor for intelligent cruise
control base on a linear array of 128 four-way vliw pro-
cessing elements. IEEE Journal of Solid State Circuits,
38(11):1992–2000, November 2003.

[10] S. Kyo, S. Okazaki, and I. Kuroda. An extended c language
and compiler for efficient implementation of image filters on
media extended micro-processors. In Proceedings of ACIVS
2003 (Advanced Concepts for Intelligent Vision Systems,
pages 234–241. Ghent University, September 2-5 2003.

[11] P. Mattson. A Programming System for the Imagine Media
Processor. PhD thesis, Dept. of Electrical Engineering,
Stanford University, 2001.

[12] C. Nicolescu and P.P. Jonker. EASY PIPE - an ”EASY
to use” Parallel Image Processing Environment based on
algorithmic skeletons. In Proceedings of the Workshop
on Parallel and Distributed Computing in Image Process-
ing, Video Processing, and Multimedia (held in conjunction
with IPDPS), 2001.

[13] P.Bogle and B. Liskov. Reducing cross domain call over-
head using batched futures. In Proceedings of the ninth an-
nual conference on Object-oriented programming systems,
language, and applications, pages 341–354. ACM Press,
1994. ISBN 0-89791-688-3.

[14] A. Peleg and U. Weiser. MMX technology extension to the
intel architecture. IEEE Micro, 16(4):51–59, August 1996.

[15] jr. R.H. Halstead. Multilisp: A language for concurrent
symbolic computation. ACM Transactions on Program-
ming Languages and Systems, 7(4):501–538, October 1985.

[16] S. Rixner. Stream Processor Architecture. PhD thesis,
Dept. of Electrical Engineering and Computer Science,
MIT, 2000.

[17] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers,
P. van der Wolf, O.P. Gangwal, and A. Timmer. Eclipse: A
heterogeneous multiprocessor architecture for flexible me-
dia processing. IEEE Design and Test of Computers: Em-
bedded Systems, pages 39–50, July/Aug 2002.

[18] F.J. Seinstra and D. Koelma. Lazy parallelization: A finite
state machine based optimization approach for data par-
allel image processing applications. In Proceedings of the
Workshop on Parallel and Distributed Computing in Image
Processing, Video Processing, and Multimedia (PDIVM
2003), 2003. Held in conjunction with IPDPS 2003.

[19] G.A. Slavenburg. TM1000 Databook. TriMedia Division,
Philips Semiconductors, 1997.

[20] Texas Instruments. TMS320C6000 CPU and Instruction
Set Reference Guide, September 2000.

[21] Y.Fujita, N.Yamashita, and S.Okazaki. IMAP-Vision: An
SIMD processor with high-speed on-chip memory and large
capacity external memory. In M. Takagi, editor, Proceed-
ings of the 1996 IAPR Workshop on Machine Vision Appli-
cations. International Association for Pattern Recognition,
1996.

34

