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Model-plant Mismatch Compensation Using
Reinforcement Learning

Ivan Koryakovskiy1, Manuel Kudruss2, Heike Vallery1, Robert Babuška1, Wouter Caarls3

Abstract—Learning-based approaches are suitable for the
control of systems with unknown dynamics. However, learning
from scratch involves many trials with exploratory actions until a
good control policy is discovered. Real robots usually cannot with-
stand the exploratory actions and suffer damage. This problem
can be circumvented by combining learning with model-based
control. In this article, we employ a nominal model-predictive
controller that is impeded by the presence of an unknown model-
plant mismatch. To compensate for the mismatch, we propose
two approaches of combining reinforcement learning with the
nominal controller. The first approach learns a compensatory
control action which minimizes the same performance measure
as is minimized by the nominal controller. The second approach
learns a compensatory signal from a difference of a transition
predicted by the internal model and an actual transition. We
compare the approaches on a robot attached to the ground and
performing a setpoint reaching task in simulations. We implement
the better approach on the real robot and demonstrate successful
learning results.

Index Terms—Learning and Adaptive Systems; Humanoid
Robots

I. INTRODUCTION

MECHANICALLY and electronically, robotics have ad-
vanced to the point where cognitive abilities have

become the main limiting factor. While robots can flawlessly
execute a set of commands to achieve a task, these commands
are mostly encoded or tuned by hand. Reinforcement learning
(RL) allows to find an optimal sequence of commands without
any prior assumption about the world. However, the application
of pure learning to real systems is very limited due to
intrinsically damaging exploratory policies. For example, when
learning from scratch the robot Leo depicted in Figure 1 can
withstand only five minutes of operation due to large and
rapidly changing motor torques and frequent falls [1].

Usually, the dynamics of physical systems are known,
but various uncertainties do not allow achieving optimal
performance with model-based control methods [2]. Whereas
for the estimation of parametric uncertainties moving horizon
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Fig. 1: Robot Leo performs up and down motions. Root point
is shown by the circle with black and white sectors.

estimation techniques [3] can often be employed, for structural
uncertainties, such as backlash, Coulomb friction or wear and
tear, this is not easily possible. Nevertheless, model-based
methods can predict the evolution of the system for a short
horizon, thus enabling the implementation of safety barriers to
limit risky exploration in dangerous state space regions.

By safety, we mean the prevention of actions that cause
damage to the system. For example, in a bipedal robot, safety
is particularly related to the robot not falling. Falls result in
impact forces applied to the limbs and gearboxes, and some
robots cannot withstand even a single fall. In model-based
control, it is natural to constrain the angles and velocities
to remain within an admissible range, and to enforce static
stability constraints such that the center of mass projection is
some distance away from the support polygon border. These
constraints help prevent falls, but a momentary violation of
them does not necessarily result in the one. In RL, it is possible
to consider angle and velocity constraints by means of negative
rewards. However, to learn avoiding such constraints, they need
to be violated multiple times in different robot configurations.
Random exploration exacerbates the problem and can lead to
a very large number of falls.

Therefore, we propose to combine RL and nonlinear model
predictive control (NMPC) in one framework that allows RL
to gather the required experience without damaging a many-
degree-of-freedom system. The experience is used by RL to
compensate the difference between the internal model of the
system and the real one. Any model-based nominal controller
is suitable, but the choice of NMPC is particularly motivated
by the complexity of the robot.

This paper proposes two different approaches shown in
Figure 2. Similarly to [4], the first approach learns a compen-
satory control action, but instead of a proportional-derivative
(PD) controller, we use NMPC, which introduces an additional
optimization problem. Since both NMPC and RL optimize
similar performance measures, the obtained policy is optimal
with respect to the real system. The second approach learns a
compensatory signal from the difference of transitions predicted
by the internal model and the actual transition. In this case,
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RL uses a different optimization goal, which does not divert
NMPC from reaching its objective. As a result, the model-plant
mismatch is eliminated by forcing the real system to behave
as if it has no uncertainties.

We conduct simulated and real experiments with Leo and
demonstrate the advantage of our proposal in the presence of
temperature- and torque-dependent Coulomb friction.

II. RELATED WORK

From a control theoretic viewpoint, our approaches can be
compared to adaptive internal model control (IMC) [5]. The
implementation requires an explicit model of the plant to be
used as part of the controller. However, in adaptive IMC, the
structure of the unknown system is determined offline, while its
parameters can be inferred by online parameter estimation [3].
A particular shortcoming is that the structure needs to be
identified precisely; otherwise a model-plant mismatch remains.
The proposed approaches require neither precise identification
of the structure nor of the parameters.

As a learning controller, we employ model-free on-policy
deterministic policy gradient (DPG) [6]. In principle, any model-
free RL algorithm such as [7]–[10] can be used. However, lack
of safety measures and sample complexity of the algorithms
limits their application to real systems.

Learning the forward model of the system demonstrates the
lowest number of interactions with it [11], [12]. Learning the
inverse model [13], [14] assumes that the model can connect
successive states prescribed by the nominal controller.

When the approximate model of the system is available, it
is possible to pre-train the initial policy, which can speed up
learning. The two-step sequential approach is proposed in [15].
First, an iterative linear-quadratic-Gaussian algorithm is used
to design an initial policy. Then, the policy is refined using
the PI2 algorithm on the real system. Another approach is to
iteratively learn the difference model of the measured state and
the state obtained on the approximate model and adopt this
difference model for improving the policy [16], [17]. Finally,
the authors in [18] use an ensemble of slightly perturbed model
parameters to learn a robust policy.

Learning involving off-line planning or human-expert demon-
strations [1], [19]–[22] constrains the problem space, thus
reducing hardware damage. This option requires either a hand-
coded suboptimal policy or a skilled human operator.

For a bipedal robot where any failure can be catastrophic,
the above methods are not suited even given a good starting
policy, because it is likely that RL will result in at least several
failures during subsequent policy improvement episodes.

It is possible to guarantee safe learning when one can either
predict repercussions of bad actions [23] or has a backup
policy to lead the system back to safe states [24], [25]. In this
article, we do not guarantee safe learning, though the proposed
approaches in practice can be safe.

Our contribution is twofold. First, we propose approaches
that can in principle compensate any type of uncertainty which
preserves the Markov property, without a time-consuming
structure identification process and expert-designed models
of friction, backlash, etc. The approaches can be implemented
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Fig. 2: Compensatory action learning (top). Model-plant
mismatch learning (bottom).

on top of an existing model-based controller which makes
it easier to integrate into the various fields of engineering,
such as robotics, chemistry or computer science. Second, we
demonstrate successful learning results on a real robot.

III. BACKGROUND

A. Problem statement

Consider the nonlinear time-invariant system in the form of

ẋ(t) = f(x(t),u(t),ρ) (1)

where x(t) ∈ Rnx the system state at time t, u(t) ∈ Rnu is
the control vector of joint motor voltages applied to the system
at time t, and ρ is an unknown structural uncertainty. The
presence of uncertainty causes the model-plant mismatch e
which is formulated as the difference between the real system
state x and the simulated state of the model x̂, see Figure 2. We
do not make any assumption on how the uncertainty enters the
equations. Thus it represents the general concept of mismatch.

B. Nonlinear model predictive control

The nominal feedback is provided by NMPC, a closed-loop
control strategy in which the control action is computed from
the current system state by solving an open-loop optimal control
problem on a finite prediction horizon [0, T ] online,

min
x(·),u(·)

∫ T

0

L(x(t),u(t)) dt (2a)

s.t. ẋ(t) = f(x(t),u(t), 0), (2b)
x(0) = x0,

g(x(t),u(t)) ≥ 0. (2c)

Here we strive to find a control trajectory u(t) such that
an objective function composed of a Lagrange term L :
Rnx × Rnu → R is minimized. The state trajectory x(t) is
characterized by the dynamic system (1). In (2b), we assume
the idealized model, ρ = 0, because nothing is known about
the uncertainties in the real system. In addition, we impose
mixed state-control path constraints g : Rnx × Rnu → Rng

such as constraints on joint angles ensuring the static stability
of the robot together with constraints formulating limits on the
maximum motor input voltage.

In the simulated experiment, we use a nominal NMPC
scheme that is based on direct multiple shooting [26]. Controls
u are approximated as piecewise constant functions. The cost
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of some discretized trajectory x0,u0,x1,u1, ... obtained using
policy uk = π(xk) is denoted as L =

∑
k L(xk,uk).

To achieve real-time control on the robot, we implement
a parallelized version of the NMPC scheme [27], where one
controller provides a fast feedback by efficiently reusing control
problem linearizations of the last iteration, while the second
controller prepares the next nonlinear step.

C. Reinforcement learning

RL is a trial-and-error method which does not require an
explicitly given model, and can naturally adapt to uncertainties
in the real system [28]. RL assumes the system is stochastic,
and thus it maximizes the expected discounted return

Gγ
k = E

{ ∞∑
i=0

γir(xk+i,uk+i,xk+i+1)

}
(3)

r(xk,uk,xk+1)=

{
−L(xk+1,uk) if g(xk+1,uk)≥0

R a otherwise.
(4)

Here r(xk,uk,xk+1) is the scalar reward given for a transition
from xk to xk+1 caused by the control signal uk = π(xk) +
n,n ∼ N chosen from some policy π. Discount rate γ ∈ [0, 1)
is required for integrability of the infinite sum. Its role is similar
to NMPC horizon T . Constraints (2c) are established by means
of the large negative reward R a. Subsequently, the episode is
terminated, and the system is restarted in state x0. Usually, RL
requires at least several repetitions to estimate the return (3)
correctly. These repetitions are obtained by adding exploration
noise N to control signals uk at every time step. The outcome
of repetitions is not known in advance and therefore may be
damaging to the system.

An important aspect of learning is the preservation of the
Markov property, which assumes that the next state xk+1

depends only on the current state xk and action uk, but not
on previous states or actions [28].

We solve problem (3) using DPG with linear function
approximation and compatible features, chosen for its ability
to optimize continuous control policies and fast convergence.

IV. PROPOSED COMBINATION APPROACHES

A. Compensatory action learning (CAL)

In the proposed combination schemes shown in Figure 2,
we use û notation for the output of the NMPC controller and
uRL notation for the output of the RL controller.

CAL approach learns a compensatory control action added to
the control input computed by nominal NMPC. For learning, we
use the NMPC-inspired reward (4), which establishes similar
optimization goals for both controllers. Due to small differences
in formulation and function approximations in RL, the obtained
policy might be suboptimal compared to NMPC.

B. Model-plant mismatch learning (MPML)

In the MPML approach, RL maximizes return (3) where the
reward is given by

r(xk,uk,xk+1) = −‖ek+1‖2 = −‖xk+1 − x̂k+1‖2. (5)

In the following, we prove two theorems. The first one
explains the behavior of the system when the model-plant
mismatch is minimized by RL. The subsequent corollary
considers the case when the cumulative return (γ > 0) is
useful for discovering a better control policy. The second
theorem specifies conditions under which the system retains
the Markov property. If the property is preserved, then RL will
not diverge, and the mismatch can be minimized. In this case,
the performance depends on the RL learning capability.

Theorem 1. The outcome of the control policy approaches the
outcome of the optimal policy with respect to the idealized
model iff the model-plant mismatch ek → 0 when k → ∞.

Proof. Writing the mismatch as ek = xk − x̂k → 0 results
in xk → x̂k. Assuming the nominal controller can reach the
setpoint on the model, x̂k → x̄k, implies that the system state
will also approach the setpoint, xk → x̄k. Since the mismatch
ek is minimized in every point of the reference trajectory x̄k,
we arrive at the proof of the theorem. The same logic holds
for the reverse.

Corollary 1. If there is a time step k such that ek 6= 0 ∀uk,
then minπγ=0 L ≥ minπγ>0 L, where πγ is the policy optimal
with respect to Gγ . Strict equality holds when the mismatch is
eliminated along the reference trajectory.

The corollary is based on the RL result that larger γ improves
the quality of the policy [29]. However, if there exists a
control action which achieves zero mismatch, then maximizing
immediate rewards (γ = 0) is desirable because the problem
becomes computationally easier.

In the following theorem, we assume that the system (1)
can be discretized as xk+1 = f(xk,uk,ρ) and the setpoint x̄
can be included into the state x for simplicity.

Theorem 2. The system controlled by the nominal controller
is Markov w.r.t. RL if (a) the system itself is Markov w.r.t.
RL, xk+1 = f(xk,uk,ρ); (b) the internal model is Markov
w.r.t. the nominal controller, x̂k+1 = f(xk, ûk, 0); and (c) the
nominal controller response ûk ≡ û(xk) +m, m ∼ M is
stochastic with some stationary distribution M.

Proof. First, by looking at the bottom diagram of Figure 2 we
write the condition (a) and show that the distribution of states
xk+1 is defined by the current state xk

xk+1 = f(xk, ûk + uRL
k ,ρ)

= f(xk, û(xk) + π(xk) +m+ n,ρ).

Next, we show that the reward is also defined by xk.

r(xk,uk,xk+1) = −‖xk+1 − x̂k+1‖2
= −‖xk+1 − f(xk, û(xk) +m, 0)‖2

The expected return averages the sum of discounted rewards
over the distribution of states and controls. Since both the
dynamics and the return are predictable from the current state
xk, we conclude that the system controlled by the nominal
controller is Markov w.r.t. RL.

Note that the real system does not have to be Markov with
respect to NMPC, which means that any uncertainty ρ can



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

be compensated. We use this observation in the real example
where ρ depends on motor temperature which does not enter
the model, but is used in RL as an extra state variable.

In the special case of an affine system (1) w.r.t. controls,
xk+1 = fx(xk,ρ) + fu(xk,ρ)uk, a perfectly learned RL
control, i.e., e = 0, is explicitly given by

uRL
k =

(
fu(xk,ρ)

>fu(xk,ρ)
)−1

fu(xk,ρ)
>[fx(xk, 0)

− fx(xk,ρ) + (fu(xk, 0)− fu(xk,ρ)) ûk],

where fx(xk,ρ) ∈ Rnx×1 and fu(xk,ρ) ∈ Rnu×nx are terms
independent of uk. As expected, the control uRL captures the
model-plant mismatch caused by ρ.

V. EXPERIMENTS

A. Robot Leo

Robot Leo is depicted in Figure 1. We focus on the task of
reaching upper and lower setpoints which together realize a
squatting motion. For this purpose, the robot is fixed to the
ground plate below its feet. Falling situation is recognized
when absolute torso angle becomes larger than 57.3 ◦. Leo has
seven degrees of freedom driven by Dynamixel XM430 servo
motors, three in each leg at ankle, knee and hip and one motor
in the shoulder. Gearboxes are subject to Coulomb friction
dependent on motor temperature and torque.

The robot state x = (φ, φ̇, p, τknee)
> is defined as a vector of

all but shoulder joint angles φ, corresponding angular velocities
φ̇, setpoint height p ∈ {0.28m, 0.35m} and mean temperature
of knee motors τknee.

Exploiting the symmetry of Leo, we apply the same control
voltages to both legs. The shoulder is actuated using a PD
controller. The setpoints are switched over when the robot
root point appears to be within ±0.01m away from it. In the
simulated experiment, we add shoulder angle and velocity to
the state, and the shoulder voltage is also learned. The robot
is initialized in a setpoint chosen randomly at the beginning
of every episode. The idealized model is made such that no
friction in joints is present. For the realistic model, we add
Coulomb friction ufr = −0.2 tanh(2000φ̇) in all joints.

The control delay of 13.0± 1.7ms comprises measurement,
computation and actuation delays. A sampling period of
33.3ms is chosen to be larger than the control delay.

B. Objective function and constraints

The NMPC objective function is defined by (2a) with

L(x,u) =0.05 (h(φ)− p)2 + 0.10 (xc(φ)− x̄c)
2

+ 0.05 (pose(φ)− 0.3)2 + 0.003 φ̇>φ̇.

Here, the first term accounts for the vertical distance h(φ) to
a setpoint p, the second term maintains the horizontal position
of the center of mass xc(φ) close to predefined value x̄c, the
third term containing pose(φ) = φankle+φknee+φhip is used
as a regularization term improving the stability of the robot,
and the last term favors small velocities.

We formulate static stability as a constraint g(x,u) = (xt−
xc(φ), xc(φ)− xh)

>, where xt, xh denote the position of the

tip and the heel of robot feet. Additionally, robot angles and
controls are subject to constraints−1.57

−2.53
−0.61

 ≤ φi ≤

 1.45
−0.02
2.53

 {|ui|, |ûi|, |uRL
i |} ≤ 10.0V

i ∈ {ankle, knee,hip}.

For MPML approach the reward (5) is calculated based on
the joint angles r(xk,uk,xk+1) = −‖φk+1 − φ̂k+1‖2.

C. Parameters

The time horizon T for NMPC optimization is selected to be
1 s. One learning or testing episode lasts for 15 s. Advantage,
critic and actor learning rates are chosen to be 0.01, 0.10 and
0.01, respectively. Additional parameters include discount rate
γ = 0.97, and an eligibility trace decay rate of 0.65. We rely
on NMPC to avoid falls of the robot, therefore negative reward
R a is not used. Exploration is achieved by Ornstein-Uhlenbeck
noise ∆uk+1 = 0.5∆uk +N (0, σ) with σ = 0.005. For the
real experiment, we select a higher advantage learning rate and
increase exploration.

D. Evaluation

For quantitative assessment, we evaluate objective (2a)
separately for reaching upper and lower setpoints L{u,l} =∑

L(x,u). Second, we evaluate the minimization of model-
plant mismatch (5) by computing the negative value of
undiscounted return E{u,l} = −G1,{u,l} =

∑
‖e‖2 for reaching

both setpoints separately. Third, we calculate root mean squared
error (RMSE) between transitions obtained by both approaches
and NMPC executed on the idealized model. Finally, to
experimentally demonstrate safety barriers imposed by NMPC,
we calculate the cumulative number of falls and violation of
NMPC constraints at multiple levels of exploration noise σ for
two proposed approaches and DPG.

For qualitative assessment, we calculate the number of squats
the robot performs during the testing episode. This measure
should be accounted only as a learning progress indicator since
it is not included in the optimization objective.

E. Simulation results

In Figure 3 and Table I, we demonstrate a significant
difference in the performance of standalone NMPC on the
idealized and realistic models. On the idealized model, NMPC
realizes three squats. On the realistic model, NMPC can reach
neither upper nor lower switching points, which results in the
inability to squat and high costs L. This result motivates the
need for an adaptive component in the controller.

To compare the performance of the proposed approaches to
the baseline performance of NMPC, we perform learning for
106 time steps. The time was enough for CAL and MPML to
converge, while DPG required about hundred times more steps.
Thus, its results were excluded from the comparison.

We notice that on the idealized model the performance of
both approaches becomes slightly worse than the baseline
performance of NMPC. For CALγ = 0.97, we observe deviation
from the optimal policy which is seen in the increase of L cost.
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TABLE I: Final performance of methods. Significant width of
the confidence interval is shown in brackets.

Method Lu

×10
Ll

×10
Number
of squats

RMSE
×104

Idealized model
NMPC 5.2 4.0 3.0 0.0
CALγ = 0.97 5.4 4.4 3.0(0.1) 6.4(1.5)
MPML 5.2 4.0 3.5 1.7(0.1)
CALγ = 0.99 5.1 4.0 3.5 11.8(4.0)

Realistic model
NMPC 9.3 7.1 0 20.1
CALγ = 0.97 5.6 4.6 2.5 10.4(0.5)
MPML 5.4 4.1 3.2(0.1) 4.3(1.2)
CALγ = 0.99 5.4 4.1 3.9(0.2) 13.2(1.2)

Real robot
NMPC 38 ◦C 22.0(2.1) − 0
MPML 7.9(2.9) 4.4(1.8) 3.3(1.1) 94.9(26.5)

Yet, the approach is able to keep the number of squats close
to the baseline value. For MPML, costs L do not change, but
the number of squats increases by 0.5 which indicates that the
approach reaches the upper setpoint right before the episode
ends. Deviation of the learned trajectory from the idealized one
is captured by RMSE which is nonzero for both approaches.
For the CAL and MPML approaches the mean RMSE is 68.6%
and 91.7% below the reference of 20.4± 0.2 which is RMSE
of NMPC trajectory obtained on the realistic model.

Results of the realistic model experiment show that both
approaches improve the performance of NMPC. The decrease
of the L cost is at least 35.2% and 41.9% for CALγ = 0.97

and MPML approaches, respectively. In terms of squats, both
learning approaches overshoot the NMPC baseline of 3 squats
and then continuously reduce the number towards the baseline.
RMSE increases comparing to the idealized model experiment,
but still remains significantly below the reference value.

To find the reason of CALγ = 0.97 performance decrease
on the idealized model, we test the approach with a discount
rate of γ = 0.99. Increasing γ leads to a longer planning
horizon which makes RL return (3) more similar to NMPC
objective (2a). It turns out that CALγ = 0.99 obtains lower L
costs not only comparing to CALγ = 0.97 but also comparing
to the baseline NMPC. We believe the reason of this is due

to the early switching of setpoints described above. While
CALγ = 0.99 can learn this fact, NMPC is not aware of it.

In Figure 4, we plot the number of falls and NMPC
constraint violations accumulated over 106 time steps. Here, we
prematurely stopped DPG for the sake of results comparability.
The proposed approaches are almost identical. Both approaches
prevent the robot from falling, while constraints get violated
at σ > 0.1. A different picture is seen in DPG results. The
smallest number of falls and constraint violations is achieved
for the value of σ = 0.02. Smaller σ reduces the learning pace,
while larger values increase chances of fall.

MPML learns almost twice as fast as CAL and does not
exhibit deviating behavior, which are the main reasons for
testing the approach on the real robot.

F. Results on the real robot

Results of standalone NMPC on Leo are shown in Figure 5.
While on the idealized model NMPC successfully reaches
switching points, on the real robot the controller is not able
to do so. The reason is due to Coulomb friction in gearboxes,
which depends on motor temperature and the applied torque.
Modeling these effects is possible but requires a precise
identification of the underlying physical processes.

To circumvent this problem, we apply the proposed MPML
approach. In Figure 5, results of three independent runs are
shown. MPML successfully realizes squatting by learning the
compensation signal. The variation of motor temperature leads
to noticeable differences in the trajectories. The trajectory
obtained in the 3rd run is less noisy and squatting is faster than
the one achieved in 1st and 2nd runs. In particular, the gradient
of the downwards motion in the 3rd run is very similar to the
idealized NMPC run, except for the later part where the slow
approach towards the setpoint diminishes.

Variation of motor temperature also leads to differences
in the learning progress, see Figure 6. 1st and 2nd runs
require substantially longer time before the squatting cycle
is observed. This is due to the increase of motor temperature
above 40.0 ◦C which requires additional exploration of the
state space. Nevertheless, all runs successfully attain a stable
squatting cycle after 7.25 h.

Model-plant mismatch Eu and E l is minimized to about 0.5
and 0.8 for reaching upper and lower setpoints, respectively.
As it was expected, minimization of model-plant mismatch
leads to minimization of the nominal controller objective (2a)
shown by plots Lu and Ll. The smallest final costs are incurred
by the 3rd run because it was stuck the least due to temperature
fluctuations, while the largest costs are incurred by the 1st run
which was stuck the most.

RMSE after learning is calculated in Table I. RMSE of
MPML trajectories is much higher than for the realistic model,
and it also exhibits more variability. Unfortunately, it is not
possible to obtain the reference RMSE value of the real robot.

Figure 7 shows the MPML knee control signal and the RL
compensation component of it. For reference, NMPC control
on the idealized model is also shown. MPML controls are
very oscillatory comparing to NMPC. Nonetheless, the robot
neither fell down, nor were its motors damaged, which is a
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significant result, cf. [1]. As is expected with Coulomb friction
compensation, RL learned to apply positive and negative
controls for the upward and downward motions, respectively.

VI. DISCUSSION

Even though the final CAL policy is optimal w.r.t. the
real system, the policy is suboptimal w.r.t. the objective of
the nominal controller (2a). This result can be explained by
the fact that RL and NMPC objectives are not exactly same.
While NMPC optimizes the undiscounted cost up to horizon
T , RL optimizes γ-discounted reward on the infinite horizon.
All in all, RL views the system and the nominal controller
as a hybrid entity and the obtained policy becomes optimal
w.r.t. the RL objective. This observation also explains the
inability of CALγ = 0.97 to reach the optimal performance on
the realistic model, even though it can significantly improve the
performance of the nominal controller. The longer prediction
horizon used by CALγ = 0.99 attains a better performance.

Another problem of CAL is the slow convergence which
is probably caused by the fact that the reward constructed
from the quadratic objective function of the nominal controller
results in small gradients [2]. This hypothesis is supported by
the fact that DPG with a quadratic cost function learns the
task extremely slowly. To mitigate this, the RL cost function
can be modified. The downside of it can be the difficulty of
predicting the outcome of such modification, e.g. robot velocity
may change drastically.

The MPML approach is free from these complications.
However, it should be emphasized that MPML optimizes policy
w.r.t. the internal model, that is RL forces the system to behave
like the idealized model. In principle, a large mismatch may
pose a problem because the obtained policy will be less optimal
w.r.t. the real system and control constraints may prevent
the necessary compensation to be applied. However, in our
experiments, this is not a problem. Minimization of the model-
plant mismatch E closely follows minimization of the nominal
controller cost L. MPML successfully learns to compensate
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model and of MPML applied to the real robot after learning
(top). Compensation signal learned by MPML (bottom).

the unknown Coulomb friction as well as its dependency on
motor temperature and torque.

The MPML approach obtains the lowest RMSE. This does
not come as a surprise, as MPML directly minimizes the
mismatch by the specifically constructed reward function. CAL
also minimizes RMSE, even though its primary goal is not
defined in terms of such minimization. Arguably, in order for
NMPC to successfully complete the task, the realistic model
should resemble the idealized one which is achieved by learning
with RL in both approaches.

For both proposed approaches, a little deviation caused by RL
exploration leads to an immediate setback reaction from NMPC.
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Our simulated experiment reveals a wide range of admissible
exploration noise σ for which the number of NMPC constraint
violations and robot falls is zero. This result demonstrates
the role of NMPC which provides safety barriers to constrain
RL exploratory actions near dangerous state space regions.
However, there are disadvantages. First, the formulated task
demands deliberate control learning which is difficult in the
presence of Coulomb friction. If the robot starts moving after
a slight overshoot caused by RL exploration, this immediately
causes the decrease of friction (Stribeck effect), and at the next
sampling moment, the system displacement appears to be too
large. NMPC counteracts, so that resulting trajectories appear
to be oscillatory. The other reason of oscillations is due to the
large control delay. Given the results, it is hard to assess the
role of NMPC counter-reaction in the oscillatory trajectories,
but we expect that reduction of sampling time and control
delay will reduce oscillations. Second, NMPC can drive the
system very close to constraint boundaries. For some systems
violation of constraints can be very critical, however, this is
not true in our case.

We note that the success of model-plant mismatch com-
pensation depends on the learning capabilities of RL on the
hybrid system mentioned above. Whether there is a decrease
or increase of computational complexity of that system against
the original system remains an open problem.

It is common to compensate for a steady-state error in a task
completion by adding an integral term to the objective that is
tuned by experimental data. Learning the actual model-plant
mismatch with MPML goes far beyond cost tuning. It allows
to predict the outcome of executed actions since the learned
trajectory is expected to be optimal w.r.t. the idealized model.

VII. CONCLUSION

We proposed two learning approaches to compensate model-
plant mismatch. Our simulation results demonstrated the
feasibility of both approaches. We implemented the better one
on a real robot affected by torque and temperature dependent
friction and autonomously learned a squatting task. Trying to
achieve a similar performance with the standalone nominal
controller would require tedious identification of the law of
such a dependency. During learning, the robot did not fall.

Several avenues can be explored in future. First, one may
reduce learning time by using different function approximators
or RL algorithms. A wide range of recent model-free RL can
be utilized in a straightforward way. Second, it is important to
validate MPML on more challenging tasks. It is also a relatively
straightforward implementation if the nominal controller is
already set up, and RL actions are bounded.
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