
Weightless Neural Network for High Frequency
Trading

Samara A. Alves
Department of Computer Science
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
samara.alvarez@ufrj.br

Wouter Caarls
Department of Electrical Engineering

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

wouter@caarls.org

Priscila M.V. Lima
Tercio Pacitti Institute

Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
priscilamvl@gmail.com

Abstract—High frequency trading depends on quick reactions
to meaningful information. In order to identify opportunities
in intraday negotiation in the stock markets, we propose a
weightless neural network autonomous trader agent composed
by forecasting and decision modules. The forecasting module uses
ridge regression, which compared favorably against recursive
least squares with exponential forgetting. The decision model
applies the predicted prices to compute technical indicators based
on a set of relative strength indicators evaluated by back-testing,
which are then used to train the weightless neural network
WiSARD in deciding whether to buy or sell stocks. Experimental
results on a real dataset from the Brazilian stock market showed
that it is feasible encode the back-testing in WiSARD in order
to improve trading rules in a way that is compatible with the
reaction time required by online market updates.

Index Terms—WiSARD, high frequency trading, relative
strength indicator, ridge regression.

I. INTRODUCTION

A typical algorithm in high frequency trading operates at
the millisecond time scale. In this kind of trade, the success
of investors is based not only on the quality of the information
they use to support decision making but also on how fast
they take decisions. The approach commonly used to predict
the future prices of a stock and assist profitable decisions in
short term trading is technical analysis: treating the historical
behavior of a stock as a time series [1].

In order to minimize computation time, online algorithms
have been proposed to support high frequency trading appli-
cations, especially the class of one-pass algorithms [2]. Im-
portant examples of this class include exponential smoothing,
exponentially weighted variance, and exponentially weighted
regression, also called recursive least squares with exponential
forgetting [3].

In this context, we propose an autonomous trader agent that
is able to negotiate in the high frequency trading scenario. The
trader agent identifies trading opportunities in the market based
on a set of trading rules and technical indicators that use the
future price predictions, and implements a weightless neural
network model WiSARD (Wilkie, Stonham and Aleksander’s
Recognition Device) [4] that evaluates these trading strategies,
trained by back-testing. WiSARD is quite well suited to such
applications because of its low time complexity. To avoid

overfitting problems, we opted to predict the future price of
stocks by ridge regression.

To validate our trader agent, we have tested it on PETR4,
one of the most negotiated stocks in the Brazilian mar-
ket, BM&FBovespa. The BM&FBovespa exchange uses the
PUMA system to trade stocks. This system is comprised of a
financial information exchange protocol, which is composed
by specific messages that enable the online electronic commu-
nication between market makers and the BM&FBovespa in a
standardized way. We compare the forecasting accuracy on
PETR4 to recursive least squares with exponential forgetting
and evaluated trading strategies by back-testing, using the
methodology described in [5].

Although high frequency trading still faces questions about
governmental regulations, the major financial markets have
established their own. Several papers have addressed the
impact of these practices on market quality [6]. Nevertheless,
according to the Securities and Exchange Commission (SEC)
this practice currently dominates the majority of trading in
the U.S. market [7]. In the Brazilian case, BM&FBovespa has
allowed this type of trading since 2009.

The remainder of this paper is organized as follows. Section
2 describes work related to our research. Section 3 explains
our proposed trader agent in detail. Section 4 describes the
experiments, while Section 5 discusses their results. Section
6 summarizes the main contributions and points to directions
for future work.

II. RELATED WORK

Several approaches have been proposed in order to forecast
financial time series and to provide decision-making support
systems. The two most important models in this field are sta-
tistical models and soft computing approaches [8]. Statistical
models assume that the time series are generated from a linear
process [9]. However, the nature of financial time series nature
is non-linear, complex, highly noisy and chaotic [1].

Artificial neural networks have been one of the most
frequently applied soft computing mechanisms in financial
forecasting and trading problems, since they perform very
well in uncertain and noisy environments. In this context,
the development of high-frequency trading strategies begins
with identification of recurrent profitable trading opportunities

present in high frequency data. However, it is hard to quantify
the returns of such strategies at different frequencies due to a
lack of available data. Most successful traders choose not to
publish their strategies, instead using them for their own profit
[5].

In the work proposed in [10], the authors implemented a
multilayer perceptron to predict positive oscillations in short
time periods (5, 10 or 15 minutes) as a trigger of a market
making process to be applied in high frequency trading,
using intraday technical indicators as input to the neural
network. The output indicated whether the market making
process should or should not be initiated predicting an uptrend
(positive oscillation).

In [11], the authors proposed a trading agent based on a
neural network ensemble that predicts if one stock is going
to rise or fall instead of predicting its future values. In
that method the experiments used two completely different
scenarios: the North American stock market with a daily
granularity and the Brazilian stock market with a 15 minute
granularity.

In [12] designed and evaluated some models of automated
agents for stock market intraday trading, which modeled strate-
gies inspired by the elliot wave principle and some technical
concepts commonly adopted by stock market analysis in short
time periods (1, 5, 10 or 15 minutes), using a dataset from the
Brazilian Stock Exchange .

In the work proposed in [13], the authors improved the risk-
adjusted trading performance of AI models using three rep-
resentative milestone models from Neurocomputing literature
namely ANN, ANFIS and DENFIS, by combining different
risk-adjusted objective functions. The authors demonstrated
the effectiveness of using an ANFIS ensemble architecture
and integration method with a span of less aggressive high-
frequency trading window (5 minutes).

III. WEIGHTLESS TRADER AGENT

In this work, we propose a trader agent that is able to
autonomously negotiate in the high frequency trading scenario.
The trader is composed of a forecasting module and a decision
module. The first module predicts the future prices and feeds
the decision module. The second module applies the predicted
prices to compute technical indicators used to identify trading
opportunities in the market based on a set of trading rules.
These trading strategies are evaluated by back-testing, which
is then used to train the weightless neural network WiSARD
in deciding whether to buy or sell stocks, as illustrated in Fig.
1.

A. Forecasting Module

In an online scenario, new input data are disclosed sequen-
tially, meaning that the algorithm must be updated whenever
new data points are observed. Moreover, in high frequency
trading algorithms the agent also needs to react extremely
fast to market updates. As such, efficient computation and
memory usage are a necessity. In order to overcome the

Fig. 1. Weightless Trader Agent.

problem of limited fast storage, [2] proposes the use of one-
pass algorithms. This type of algorithms receives one data
point at a time and updates a set of factors. Only the updated
factors are kept in accessible memory, while the actual data
point is discarded thus the algorithm uses only a minimal
amount of memory and parameters.

The exponentially weighted linear regression model is very
useful in high frequency trading strategies [2]. We include an
l2-norm regularization term in the loss function, to reduce the
variance of the regression coefficients and thus, the forecast
error variance. This method is commonly known as ridge
regression.

1) Ridge Regression.: The model considers a two-
dimensional time series (Xt, Yt) and conjectures that the
variables X and Y are related via a linear relation. These data
points are collected in a vector y = (y0, y1, ..., yt)

T and a
matrix X . In our model we defined y as the prices vector
and X as the hypotheses matrix. A major advantage of this
approach is the ability to choose the hypotheses that best fit
the study scenario. Our matrix is composed by a long moving
average (MAl), a short moving average(MAs), the trading
time, and the exponentially weighted moving average of the
prices (EXP).

To calculate the exponentially weighted moving average,
let ŷi denote the estimated value of the original data point yi,
i = 1, ..., t. The exponentially weighted moving average can
be computed via the following recursion: ŷi = α yi−1 + (1−
α)ŷi−1.

Supposing y is linearly dependent on X , their relationship
can be written in matrix notation as y = βX + ε. Where
ε is a vector of stochastic noise terms with zero mean. The
approach to estimating the parameter vector β uses ordinary
least squares with a penalty factor λ, where λ ≥ 0, on the
size of coefficients. Thus, the ridge coefficients minimize a
penalized residual sum of squares

min
β

t∑
j=0

(yj − β0 − β1xj − ...− βkxj)
2 + λ

k∑
j=0

β2
j (1)

To validate our forecasting module, we compared the fore-
casting accuracy with the methods proposed in [2]: recur-
sive least square with exponential forgetting and exponential
smoothing. In both algorithms a single parameter α, 0 < α ≤
1, controls the rate at which old information is forgotten.

2) Recursive Least Squares with Exponential Forgetting.:
This approach considers a recursive method that updates β
sequentially and minimizes

min
β

t∑
j=0

α(t−j)(yj − β0 − β1xj − ...− βkxj)
2 (2)

In this algorithm a matrix M and a vector v, at each step
t, are updated with a new data point as: Mt = αMt−1 +
XT

t Xt and vt = αvt−1 +XT
t yt. After each time t the best

estimate is β = M−1
t vt. The advantage of recursive least

squares is that it is computationally more efficient than regular
least squares. Ridge regression as described above can also be
made recursive, by adding the regularization factor from (1)
into (2).

B. Decision Module

In high frequency trading algorithms the agent needs to
react extremely fast to market updates to be ahead of other
market participants, making efficient computation and memory
usage a necessity. To build the decision-making module of
the agent, we used the weightless neural network model
WiSARD, because two of the main advantages of this model
are its fast training and classification times. The goal of
WiSARD is to learn if the trading strategy based on the
predicted relative strength indicator (RSI), moving average
convergence/divergence (MACD), rate of change (ROC), com-
modity channel index (CCI) and moving average values results
in profitable or unprofitable buys and sells in order to decide
whether or not to change the strategy.

1) RSI: RSI is a momentum oscillator that provides signals
to buy when the price is oversold, described as a period of time
where there has been a significant and consistent downward
move in price, and to sell when it is overbought, described as a
period of time where there has been a significant and consistent
upward move in price. For this, let t1 and t2 be subsequent
trading periods and Pti the last price in trading period i, i =
1, 2. An upward change (U) is characterized by Pt2−Pt1 > 0,
on the other hand a downward change (D) is characterized by
Pt2 − Pt1 < 0. The calculation of the RSI is described as
follows: RSI = 100 − 100

1+RS . Here, RS = EMA(U)
EMA(D) , where

EMA(U) is the exponential moving average of the upward
changes, and EMA(D) is the exponential moving average of
the downward changes.

2) ROC: The ROC indicator shows trends by remaining
positive while an uptrend is sustained, or negative while a
downtrend is sustained. Its calculation is: ROC = Pt2−Pt1

Pt1

3) MACD: The MACD indicator is a trend-following mo-
mentum indicator composed by three time series: the MACD
series, the signal series and the difference between them. The
MACD series is the difference between a short and a longer
period exponential moving average of historical price. The
signal series is an exponential moving average of the MACD
series itself. So, MACD = EMAL − EMAS. Here, EMAL

and EMAS are the exponential moving average of a long and
a short period of the historical price.

Fig. 2. WiSARD discriminator during the training phase.

4) CCI: The CCI indicator identifies cyclical trends. The
calculation is described as follows: CCI = TP−SMA

0.015∗σ . Here,
SMA is the simple moving average, and σ is the mean absolute
deviation and TP = H+L+C

3 , where H, L and C are the
maximum value, the minimal value and the last price in the
period t1, respectively.

5) WiSARD: The model is a weightless neural network used
for pattern classification which has been successfully applied
to several areas [14], [15], [16], [17]. The model is composed
of units called discriminators, each of them corresponding to
one output class of the problem and composed by a set of
RAM units. The RAMs have a fixed number of address bits
randomly connected to the binary input pattern. Nonbinary
input must first be converted to a binary representation.

Fig. 2 shows a discriminator during the training phase,
with a set of 5 RAMs with a 3 bit address. The input
pattern, at this phase, is presented only to the discriminator
of its corresponding class, as depicted in Fig. 2. The position
addressed by the input bits of each RAM unit receives the
value 1. The RAM positions are initialized the value 0.

Fig. 3 details the same discriminator of Fig. 2 during the
classification phase. At this stage, a new pattern is presented
to all discriminators and the value stored during the training
phase in each RAM unit is returned. The output of the
discriminator is the sum of the contents of the positions
accessed in each of its RAMs. In the example shown in
Fig. 3 the output of this discriminator is 3. The class of the
discriminator with the highest output is selected as the output
of the model.

Therefore, the main difference when compared to traditional
approaches lies in the way knowledge is represented internally.
Unlike feedforward neural network models, which uses weight
matrices, WiSARD uses a set of RAM units connected to the
(binary) input pattern. One can see that, because of the simple
operations involved in both training and classification phases,
WiSARD’s complexity is very low and particularly suitable
for online algorithms.

Fig. 3. Discriminator Output.

IV. EXPERIMENTS

A. Data Set Description

The dataset was collected by GetHFData [18] and consists
of tick-by-tick transaction data of the preferred Petrobras share
PETR4, in the equity market of Bovespa, from 2015-09-30
until 2015-10-31. In [5] it is asserted that one month is enough
to experiment in high frequency trading because the small
granularity already results in a very large dataset.

Tick data are irregularly spaced at time intervals [5] which
means that at each timestamp the database records the price
traded. Therefore, the proposed system uses the granularity of
1, 5, 10 and 15 minute time intervals. The goal is to evaluate
the influence of temporal granularity in predicting fluctuations
in the price of an asset.

Furthermore, in order to adopt a suitable structure for this
scenario, we used a sliding window for training and testing. So,
the training starts at the first window – which represents how
many values the agent has to look in the past to reasonably
predict the future – and slides by moving this window one
new data point each time. As such, the training is updated
whenever a new transaction occurs.

B. Forecasting Evaluation

In order to be able to forecast future price movements using
past data, most linear models require that the distributional
properties of the data remain approximately constant through
time, or are stationary [5]. However, financial data are fre-
quently non-stationary. Therefore the financial literature often
analyzes financial data defined as follows, where Pf is the
first price of a time interval and Pl is last price of the time
interval:

Rt =
Pl
Pf

− 1 (3)

The market efficiency theory [19] defines that all informa-
tion of the stock market is incorporated instantaneously into
its price, such that prices in the market follow a random walk
[19]. For this purpose, the market movement can be defined
as a stochastic price process. Then, Pt is a martingale if the
best forecast of Pt+1 based on current information is Pt itself.

Hence, we decided to test for an efficient market by defining
an approach which sets out the next stock price as the same
as the last price observed and comparing its forecasting error
with ours.

To evaluate the prediction of the prices we compared the
results of the ridge regression and recursive least square with
exponential forgetting. All algorithms were implemented in
Python 2.7 and used scikit-learn1 to support the ridge
regression algorithm and padasip2 to implement the recur-
sive least square algorithm. We evaluated the generalization
performance of the forecaster by the Root Mean Square Error
(RMSE).

C. Decision Evaluation

The decision-making module of the agent used a static rule
based on RSI that advises the trading system to buy stocks
if this indicator is lower than 30 and to sell if it is higher
than 70. The weightless neural network model WiSARD,
implemented in PyWANN [20], then learned if the decision
is an unprofitable or profitable one in order to accept or
change this decision. The network was fed with the inputs of
the technical indicators RSI, MACD, ROC, CCI and moving
averages converted into a binary concatenated representation
that recorded the indicators’ values and its outputs were the
predicted trade profitability: buy loss, sell loss, buy profit or
sell profit. If the network predicts an unprofitable transaction,
the original decision is reversed.

The retina therefore consists of five parts. The first part
is a 3-bit vector where the first bit equals 1 if RSI ≤ 70;
the second bit equals 1 if 30 < RSI < 70; and the third
bit equals 1 if RSI ≥ 70. The second part is a 3-bit vector
where the first bit of each vector equals 1 if P > SMAshort;
the second equals 1 if P < SMAlong; and the third equals
1 if SMAshort < SMAlong. Here, P is the stock price,
SMAshort and SMAlong are the simple moving average in
a short and a long period. The third part is a 1-bit vector
that equals 1 if Signal > MACD. The fourth part is a 3-bit
vector where the first bit is 1 if ROC ≤ 0.02; the second
bit is 1 if −0.02 < ROC < 0.02; and the third bit equals
1 if ROC ≥ −0.02. The fifth part is a 3-bit vector where
the first bit equals 1 if CCI ≤ 25; the second bit equals 1
if 15 < CCI < 25; and the third bit equals 1 if CCI ≥ 15.
The total length of the structure is 13 bits. In total, the model
is composed of 4 discriminators (buy loss, sell loss, buy profit
or sell profit) represented in Fig 2 by a set of 7 RAMs with
2 bit addresses.

The network output is an evaluation of the trading strategies
based on a methodology presented in [5]. This approach
consists in dividing all trading opportunities into profitable
and unprofitable buys and sells. The profitable opportunities
are determined based on stop-gain and stop-loss parameters
decided before training. The stop-gain and stop-loss strategies
are defined as an advance order to sell an stock when it reaches

1http:///scikit-learn.org/stable/modules/linear-model.html
2http://matousc89.github.io/padasip/sources/filters/rls.htm

a particular price limit in order to limit the losses. In our trader,
we defined the stop-gain as the point where the price reached
the last price traded plus z times the standard deviation of the
historical prices. On the other hand, we defined the stop-loss
as the point where the price reached the last price traded minus
z times the standard deviation of the historical prices. Stop-
gain and stop-loss are parameters defined to assist the system
in closing the position. The situation where the price reached
the stop-gain before the stop-loss was defined as a profitable
trading opportunity. This way, the outputs were if the trading
decisions is a profitable buy, a profitable sell, an unprofitable
buy or an unprofitable sell.

We evaluated if WiSARD is able to identify if the decision
rules is an unprofitable or a profitable decision. Thereby, we
used the firsts data to train the network and the last ones, in
sequence, to test. Moreover, as the RAM units are randomly
connected to the input pattern, we performed 100 runs in order
to calculate the accuracy standard deviation. After that, we
verified whether the processing times of the WiSARD, during
training and recognition, were compatible with the time of
trading in this high frequency trading scenario.

V. RESULTS AND ANALYSIS

A. Data Set Evaluation

In order to evaluate whether our price series, as most
financial data, was non-stationary we applied the Augmented
Dickey Fuller test [21], which tested the null hypothesis of
a unit root was present in a time series sample. We failed to
reject the null in all these granularity time windows since all
p-values were greater then 20%. However, after preprocessing
our data as described in (3), the p-value, in all these cases,
were less than 0.00001. This meant that we could reject
the null hypothesis and concluded that our return series is
stationary. Consequently its statistical properties do not change
over time which guarantees the convergence of the predictor.

B. Forecasting Module Evaluation

The optimal parameters were estimated by comparing the
RMSE in a grid search algorithm. In this experiment, using the
raw dataset (tick by tick), the best exponential forgetting factor
was 0.001 and 0.099, chosen by a line search between 0.0001
and 0.1 with fixed step size 0.01, for the least squares with
exponential forgetting and the ridge regression, respectively.
For the short moving average and the long moving average,
the best parameters were 2 and 5, respectively, from a range
between 2 and 15 with step size 1.

In order to select the best regularization factor, λ, one must
tune this parameter in such a way that a balance between
model fit and model complexity is maintained, since if λ is
very large, the regularization effect dominates the squared loss
function and the coefficients tend to zero. Whereas, if λ is very
small the solution tends towards ordinary least squares, where
coefficients exhibit big oscillations. In this sense, we choose
to use the Aikaikes information criterion (AIC) [22], which
measures the balance between model fit and model complexity.
To support this decision, we used the RidgeCV implementation

TABLE I
COVARIANCE MATRIX OF RIDGE COEFFICIENT

coefficients log(Time) EXP MMAs MMAl

log(Time) 1 0.3572 0.3596 0.3681
EXP 0.3572 1 0.9979 0.9892
MMAs 0.3596 0.9979 1 0.9940
MMAl 0.3681 0.9892 0.9940 1

TABLE II
RIDGE COEFFICIENT (1 MINUTE TIME WINDOW GRANULARITY)

Model RMSE MAE AIC
log(Time) 0.0018613 0.0013511 -12542.3
EXP 0.0018613 0.0013511 -12542.4
MMAs 0.0018611 0.0013511 -12543.1
MMAl 0.0018611 0.0013510 -12543.1

MMAl+log(Time) 0.0021743 0.0015379 -11706.9
MMAl + EXP 0.0021656 0.0015307 -11728.4

MMAl+log(Time) +EXP 0.0021595 0.0015364 -11741.6

by scikit-learn, which built an efficient form of leave-
one-out cross-validation. The optimal lambda estimation using
the AIC criterion was 1e− 05.

The matrix of the ridge regression model is composed
of the following hypotheses (coefficients): log(Time), EXP
(which represents exponential smoothing of prices), MMAs
and MMAl. We observe from Table I, that the independent
variables EXP , MMAs and MMAl are strongly linearly
correlated. The existence of multicollinearity may induce in-
accurate estimates of the regression coefficients. Thus, in order
to select an appropriate model we compared 7 different models
combining these variables using a 1 minute time window
granularity. As one can see from Table II, an appropriate model
for our dataset in this particular experiment scenario is the
Model MMAl, which presents the smallest RMSE, MAE and
AIC values.

The last experiment for the forecasting module is presented
in Table III. In this we evaluated the regression approaches
using the RMSE, which measures the predictor accuracy, for
the model selected in Table II. In terms of generalization per-
formance, ridge regression (Ridge) presents better results for
all time window granularities, compared to the recursive least
squares with exponential forgetting (RLS) approach proposed
in [2]. Additionally, we used the Welch’s t-test to compare
the Mean Absolute Error (MAE) of Ridge to RLS. As the p-
values in all these cases are less than 0.0001, we have enough
evidence to reject the hypotheses that Ridge has statistically
similar MAE as RLS.

TABLE III
COMPARISON OF THE FORECASTERS USING RMSE.

Granularity 1 min 5 min 10 min 15 min
RMSE Ridge 0.00160 0.00298 0.00403 0.00467
RMSE RLS 0.00223 0.00403 0.00541 0.00607
MAE Ridge 0.00117 0.00216 0.00303 0.00349
MAE RLS 0.00159 0.00290 0.00401 0.00463
Welch test -13.17 -5.66 -4.15 -3.44

Welch test P-value 3.93e-39 1.78e-08 3.75e-05 6.25e-04

TABLE IV
TRADES SUMMARY WITH RIDGE REGRESSION

Experiment A B A B A B A B
Granularity (min) 1 1 5 5 10 10 15 15

ACC (%) - 55 - 59 - 60 - 68
Profitable Buy 523 611 84 110 40 47 12 30

Unprofitable Buy 654 405 111 90 43 37 34 31
Profitable Sell 708 957 191 212 112 118 82 85

Unprofitable Sell 787 699 142 116 69 62 42 24
Win (%) 46 59 52 61 58 63 55 68
Loss (%) 54 41 48 39 42 38 45 32

Win Loss Ratio 0.85 1.42 1.09 1.56 1.35 1.66 1.23 2.08
Expectancy -0.08 0.17 0.04 0.22 0.15 0.25 0.10 0.35

C. Decision Evaluation

In order to evaluate the profitability of the trading system
we considered trades with a a fixed volume of shares to
calculate trading statistics, such as: win ratio, win loss ratio
and expectancy. The win ratio refers to the percentage of
winning trades among all trades taken, and is an important
aspect of risk management. Based on this concept the trader
will be considered profitable if it can hit a win ratio higher
than 50%, as the evaluation method used in [11]. The win
loss ratio is a comparison between the number of wins and
the number of the losses. Considering this the trader will be
profitable if this ratio is greater than 1, which indicates that,
on average, it wins more often than it loses. The third statistic
is the expectancy, which is calculated by taking the product of
average winning trade size and the win ratio then subtracting
the product of the average losing trade size and the loss ratio.
Therefore trading strategy is considered profitable if it has an
expectancy greater than zero.

In the first experiment in the decision module, based on
the RSI trading rules, we simulated a forecaster with 100%
accuracy, which we call the Oracle. This Oracle was built
by using the real traded prices of the dataset instead of
using the prices provided by the forecasters. These results
used parameter 0.9 for the RSI exponential forgetting factor.
The win ratio of the proposed strategy was superior for all
granularities when using price predictions at time t + 1 and
with z equal to 1. This meant that the agent performed best for
short-term predictions, and when the stop-gain and stop-loss
formed a small variation band to assist the system to close the
position.

In the second experiment we evaluated the agent in two
parts: experiments A and B. In both of them, we used the best
parameters found in the Oracle experiment. In the experiment
A the agent decision was based on the RSI rules in order
to decide whether to buy or sell stocks. In experiment B,
the WiSARD was used to predict profitability and alter the
RSI decision if necessary. After each prediction it was trained
on-line for that same input, using a back-testing oracle to
generate the label 1. Table IV lists the number of profitable
and unprofitable buys and sells, its win percentage, the win
loss ratio, the expectancy and the WiSARD accuracy. As one
can see, the trader improved its win ratio and expectancy
from experiment A to B. Moreover, Table IV shows that
the win loss ratio is greater than one for all granularities in

experiment B. This implies that the agent performance was
improved by training the network using actual profitability
from data instead of fixed trading rules, since the WiSARD
was able to identify some of the failed RSI trading strategy
signals. Besides that the training and classification mean times
at each point in the dataset were 0.08 and 0.20 milliseconds,
respectively, considering only the time needed for decision
making.

We executed the classification phase 100 times and the
WiSARD showed accuracy greater than 55% in the experiment
B, with a zero standard deviation. We can observe that the
level of granularity affects the overall trades in the strategies.
For example, for the 1 minute granularity, the occurrences
of identified opportunities by the strategies are checked in
increments of 1 minute; for the granularity of 5 minutes,
the occurrences are checked every 5 minutes. This directly
influences the number of opportunities identified by each
strategy.

for i← 1 to n do
if pricei ≥ stop gain :

if RSI decision rule == sell :
real back testing label = sell loss ;

else:
real back testing label = buy profit ;

break
if pricei ≤ stop loss :

if RSI decision rule == sell :
real back testing label = sell profit ;

else:
real back testing label = buy loss ;

break
end
if WiSARD result = buy loss or = sell profit :

if real back testing label = buy loss or = sell profit :
final result = sell profit

else:
final result = sell loss

else:
if real back testing label = buy profit or = sell loss :

final result = buy profit
else:

final result = buy loss
train WiSARD with real back testing label

Algorithm 1: Experiment B

VI. CONCLUSION

In this work, we proposed a trader agent, composed of two
modules, that was able to negotiate in the high frequency
trading scenario. The first module predicted the future prices
and fed the decision module. We compared ridge regression,
the strategy adopted in the first module, with that proposed in
[2] and it achieved better generalization performance. The sec-
ond module applied the predicted prices to compute technical
indicators used to identify trading opportunities in the market
based on a set of trading rules. These trading strategies were
evaluated by back-testing, which were then used to train the
weightless neural network WiSARD in deciding whether to
buy or sell stocks. The results applied on a real dataset from
the Brazilian stock market showed meaningful performance
of the neural network in order to improve trading rules in a

way that is compatible to the reaction time required by online
market updates.

Few published works have addressed the problem of trading
in high frequency scenario using technical indicators. A major
part of the studies focused on trading strategies that have
tended to trade in bid-ask spread analysis. Although, the most
important limitation of that field of research lies in data avail-
ability, many successful traders choose not to publishes their
strategies, using them for their own profit [5]. As a next step,
we will seek to find the best WiSARD architecture for each
time interval, since the same architecture was employed at the
four time intervals leading to different performance for each
time interval. Another possible topic of future investigation
could be the relation of the WiSARD, adjusted by backtesting,
to a more sophisticated regression function representing the
behavior of the time series, as well as using only causal labels
during on-line training.

REFERENCES

[1] J. J. Murphy, Technical analysis of the financial markets: A comprehen-
sive guide to trading methods and applications. Penguin, 1999.

[2] J. Loveless, S. Stoikov, and R. Waeber, “Online algorithms in high-
frequency trading,” Communications of the ACM, vol. 56, no. 10, pp.
50–56, 2013.

[3] M. E. Salgado, G. C. Goodwin, and R. H. Middleton, “Modified least
squares algorithm incorporating exponential resetting and forgetting,”
International Journal of Control, vol. 47, no. 2, pp. 477–491, 1988.

[4] I. Aleksander, W. Thomas, and P. Bowden, “WisardŁ a radical step
forward in image recognition,” Sensor review, vol. 4, no. 3, pp. 120–
124, 1984.

[5] I. Aldridge, High-frequency trading: a practical guide to algorithmic
strategies and trading systems. John Wiley & Sons, 2013, vol. 604.

[6] M. OHara, “High frequency market microstructure,” Journal of Finan-
cial Economics, vol. 116, no. 2, pp. 257–270, 2015.

[7] U. Securities, E. Commission et al., “Equity market structure literature
review part ii: High frequency trading,” Staff of the Division of Trading
and Markets, 2014.

[8] R. C. Cavalcante and A. L. Oliveira, “An autonomous trader agent
for the stock market based on online sequential extreme learning
machine ensemble,” in Neural Networks (IJCNN), 2014 International
Joint Conference on. IEEE, 2014, pp. 1424–1431.

[9] D. A. Kumar and S. Murugan, “Performance analysis of indian stock
market index using neural network time series model,” in Pattern
Recognition, Informatics and Mobile Engineering (PRIME), 2013 In-
ternational Conference on. IEEE, 2013, pp. 72–78.

[10] E. Silva, D. Castilho, A. Pereira, and H. Brandao, “A neural network
based approach to support the market making strategies in high-
frequency trading,” in Neural Networks (IJCNN), 2014 International
Joint Conference on. IEEE, 2014, pp. 845–852.

[11] F. Giacomel, R. Galante, and A. Pereira, “An algorithmic trading agent
based on a neural network ensemble: a case of study in north american
and brazilian stock markets,” in Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2015 IEEE/WIC/ACM International Conference
on, vol. 2. IEEE, 2015, pp. 230–233.

[12] E. Jabbur, E. Silva, D. Castilho, A. Pereira, and H. Brandão, “Design
and evaluation of automatic agents for stock market intraday trading,”
in Proceedings of the 2014 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT)-Volume 03. IEEE Computer Society, 2014, pp. 396–403.

[13] V. Vella and W. L. Ng, “Enhancing risk-adjusted performance of stock
market intraday trading with neuro-fuzzy systems,” Neurocomputing,
vol. 141, pp. 170–187, 2014.

[14] D. O. Cardoso, D. S. Carvalho, D. S. Alves, D. F. Souza, H. C. Carneiro,
C. E. Pedreira, P. M. Lima, and F. M. França, “Financial credit analysis
via a clustering weightless neural classifier,” Neurocomputing, vol. 183,
pp. 70–78, 2016.

[15] H. C. Carneiro, F. M. França, and P. M. Lima, “Multilingual part-
of-speech tagging with weightless neural networks,” Neural Networks,
vol. 66, pp. 11–21, 2015.

[16] B. P. Grieco, P. M. Lima, M. De Gregorio, and F. M. França, “Producing
pattern examples from mental images,” Neurocomputing, vol. 73, no. 7-
9, pp. 1057–1064, 2010.

[17] S. A. Alves, F. Rangel, F. F. Faria, and P. M. Lima, “Análise de séries
temporais financeiras utilizando wisard,” in Congresso Brasileiro de
Inteligência Computacional-Volume 01, 2015.

[18] M. Perlin and H. Ramos, “Gethfdata: A r package for downloading
and aggregating high frequency trading data from bovespa,” Brazilian
Review of Finance, vol. 14, no. 3, pp. 443–478, 2016.

[19] E. F. Fama, “Efficient capital markets: A review of theory and empirical
work,” The journal of Finance, vol. 25, no. 2, pp. 383–417, 1970.

[20] F. Firmino, “PyWANN,” https://github.com/firmino/PyWANN, 2017.
[21] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the aug-

mented dickey–fuller test,” Journal of Business & Economic Statistics,
vol. 13, no. 3, pp. 277–280, 1995.

[22] G. Schwarz et al., “Estimating the dimension of a model,” The annals
of statistics, vol. 6, no. 2, pp. 461–464, 1978.

